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Abstract. The CIRCA planning system automatically
creates reactive plans and uses formal verification tech-
niques to prove that those plans will preserve system
safety. CIRCA’s timed automata verification system is
highly efficient, yet can display pathologically bad be-
havior when reasoning about reaction loops, a particular
form of interacting cycles of states. In this paper we de-
scribe a loop acceleration technique that recognizes these
state space structures during the verification process and
bypasses the process of expanding an arbitrarily large
cycle of states, effectively compressing loops of arbitrary
size into a compact, finite set of states. The resulting per-
formance improvement can be very dramatic: in domains
where tight loops of short-duration transitions interact
with long-duration transitions, our new loop accelera-
tion methods can reduce verification time (and hence
planning time) from hours to below a second.

1 Introduction

The ability to automatically prove reachability proper-
ties of programs or plans has many applications in com-
puter science, including safety proofs for plans gener-
ated by classical planning systems. Although intractable
(or in some cases undecidable) in the worst-case, algo-
rithmic improvements and modern computing hardware
have made these model-checking techniques practical for
larger and larger problems. Unfortunately, when patho-
logical cases arise, practitioners may encounter the in-
tractability.

We describe a specific challenge, state space fragmen-
tation, that can arise in the context of model-checking
timed automata, and present a practical solution to many
instances of this challenge. The model of timed automa-
ta [1], an extension of nondeterministic finite state ma-
chines, was developed to analyze real-time systems, such

as discrete supervisory control of temporally-extended
processes. Systems for model-checking timed automata
include UPPAAL [2–4] and Kronos [5].

The state-space fragmentation problem arises when
state transitions of greatly different temporal latencies
create interacting cycles of states. This problem was
first described by Hune [6] and Iversen [7] in the con-
text of verifying real-time controllers for LEGO R©Mind-
stormsTM robots. In some cases where two transition cy-
cles apply to the same plan state, the shorter duration
transition can “fragment” [8] the larger transition, cre-
ating an explosion in the number of states considered by
the model-checker.

We encountered the fragmentation problem in the
form of “reaction loops” in the CIRCA hard real-time
planning, controller synthesis, and reactive execution sys-
tem. CIRCA automatically synthesizes hard real-time
controllers that may be modeled as timed automata,
and uses a custom timed automaton model-checker in
its controller synthesis [9–12]. As part of the controller
synthesis process, the timed automaton model-checker is
used to verify that the controllers are safe (that failure
states are unreachable). We encountered the fragmenta-
tion problem checking CIRCA controllers that executed
quick reactions to meet environmental threats while si-
multaneously monitoring long-duration processes. Such
problems would typically make the verification runs take
so long as to make the controllers impossible to ana-
lyze, and thus synthesis became impossible. We devel-
oped a new technique for loop acceleration that covers
a case not handled by previous methods. We describe
that technique and its implementation in this paper, and
show that it radically speeds up timed automaton ver-
ification. While the technique exploits some particular
features of CIRCA control problems, these features are
not especially exotic, so the technique should be readily
applicable in other timed automaton problems.
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We begin by discussing related work on fragmenta-
tion in timed automata, focusing on the work by Hen-
driks and Larsen. After that, in Section 3, we introduce
the CIRCA system, its controller synthesis process, and
the way it uses a timed automaton verifier. We then re-
view the model of timed automata, and discuss some of
the most important features of timed automata reach-
ability verification (Sections 4 and 5). We bring things
together, discussing how the CIRCA controllers may be
modeled with timed automata (Section 6). We introduce
the problem of reaction loops (Section 7), and the loop
acceleration technique that we have developed to han-
dle the problem (Section 8). After that, we present a
proof that analytically demonstrates the correctness of
the technique (Section 9), and empirically demonstrate
its usefulness with empirical results from tests with the
CIRCA system (Section 10). We conclude with some
ideas about future directions (Section 11).

2 Related work

The most closely-related work to ours is the work on
loop acceleration for UPPAAL done by Hendriks and
Larsen [13,8]. It was the discovery of this work that in-
spired our own. Despite that, their work is quite different
from ours in technique and objectives.

In particular, their technique is particularly tailored
to verifying correct controllers. It was developed in re-
sponse to a problem verifying the correctness of a con-
troller that conducted a busy-waiting loop during the
course of a long-running process in the controller’s en-
vironment. It was very expensive to recognize that the
system would eventually reach the desired state — ver-
ification of an “eventually reachable” TCTL goal. Their
solution involves adding loop acceleration edges to the
model, allowing UPPAAL to detect the reachability more
quickly, using breadth-first search, than with the original
un-augmented model.

That approach would not help us in the verification
of CIRCA control plans; in fact, it would actually make
verification worse! The difference is that the primary
task in CIRCA verification is to demonstrate that the
controller is safe by showing that it can never reach an
undesirable state. This means that verification involves
exhaustive search of the state space, so that augmenting
the model with new transitions (shortcuts), as Hendriks
and Larsen do, would actually make the search space
bigger, and in the case where the controller is safe, would
make the search consume more time. Our technique, by
contrast, works by collapsing together parts of the state
space that are equivalent with respect to the class of
safety queries, making exhaustive search faster.

Hendriks and Larsen’s technique also works only in
the case where a loop is concerned only with a single
clock. That is, where all the guards and invariants in-
volve only a single clock, and where the value of that

single clock increases monotonically. By contrast, in our
loops there are typically multiple clocks racing against
each other, and clocks are reset — since the loop involves
the controller repeatedly servicing some process in the
environment.

Other researchers have recently presented approaches
to acceleration in different, but related contexts. For
example, Fietzke et al. [14] have shown how to accel-
erate loops involving a single clock in a variation of
timed automata they call “Extended Timed Automata.”
Bozga et al. [15] present theoretical work on identifying
periodic relations in model checking and an implemen-
tation in their FLATA toolset. However, they are inter-
ested in infinitely periodic loops, and are working with
integer programs, rather than timed automata. Bardin
et al. have developed a general theory of acceleration in
model-checking [16], that includes loop acceleration as a
special case of what they call “flat acceleration.” They
have applied it to integer programs in the FAST tool [17].
Closer to our own interests is the work by Ben Salah
on partial order optimization for timed automata [18].
While the field of their optimization is different, it is
similar in computing a convex clock region for multiple
different paths, in their case paths that represent differ-
ent permutations of the same discrete transitions. The
theoretical underpinnings of this work might make avail-
able a more direct proof of correctness of our own loop
acceleration.

3 CIRCA Background

CIRCA, the Cooperative Intelligent Real-time Control
Architecture [9–12], like many autonomy architectures,
comprises three layers:

1. The Adaptive Mission Planner (AMP)
2. The Controller Synthesis Module (CSM), and
3. The Real-Time Subsystem(RTS).

The AMP generates a long duration mission plan con-
sisting of one or more mission phases. It constructs phases
by reasoning about long term resource management (where
computation time devoted to planning is a significant re-
source) and choosing groups of mission goals and threats
to compose as planning problems for the CSM. Through
on-line resource management and dynamic composition
of planning problems, the AMP helps deal with the pos-
sibly intractable challenge of planning (and verifying) a
single policy for the entire mission. This simplifies the
overall autonomous control problem into a sequence of
simpler problems for which controllers can more easily be
planned, verified, and executed. The RTS executes the
individual controllers, providing hard real time guaran-
tees. We will not discuss these components further in
this paper: the CSM is our focus here.

The CIRCA CSM contains two main modules of in-
terest for this paper: the planner proper, which reasons
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ACTION turn_on_main_engine ;; Turning on the main engine

PRECONDITIONS: ’((engine off))

POSTCONDITIONS: ’((engine on))

DELAY: <= 1

EVENT IRU1_fails ;; Sometimes the IRUs break without warning.

PRECONDITIONS: ’((IRU1 on))

POSTCONDITIONS: ’((IRU1 broken))

;; If the engine is burning while the active IRU breaks,

;; we have a limited amount of time to fix the problem before

;; the spacecraft will go too far out of control.

TEMPORAL fail_if_burn_with_broken_IRU1

PRECONDITIONS: ’((engine on)(active_IRU IRU1) (IRU1 broken))

POSTCONDITIONS: ’((failure T))

DELAY: >= 5

Fig. 1. Example transition descriptions given to CIRCA’s CSM.

about time-abstract states to plan actions, and a ver-
ifier that reasons about partial and complete plans to
ensure that they meet logical and timing safety require-
ments. In this section, we briefly sketch these functional
modules and describe an example problem that we will
carry throughout the paper, to illustrate how CIRCA
uses model verification in the context of automated plan-
ning and how the loop acceleration technique speeds up
model verification.

3.1 State Space Planning

Unlike traditional AI planners, CIRCA reasons about
uncontrollable processes including adversaries, and met-
ric, continuous time. The CSM takes in a description of
the processes in the system’s environment, represented
as a set of time-constrained transitions that modify the
value of world features. Discrete states of the system are
modeled as sets of feature-value assignments. Transitions
have preconditions, describing when they are applicable,
and bounded delays, capturing the temporal character-
istics of controllable processes (i.e., actions) and uncon-
trollable processes (i.e., world dynamics).

Example 1. Figure 1 shows several transitions from a
CIRCA problem description for controlling the Cassini
spacecraft during Saturn Orbit Insertion [19,20]. In this
problem, CIRCA must generate a controller that will
turn on the main engine in time to perform the orbital
insertion within the time window. In order for the ma-
neuver to complete successfully, the spacecraft must be
guided by a working Inertial Reference Unit (IRU).

The transition descriptions, together with specifica-
tions of initial states, implicitly define the set of possible
system states. The CSM is responsible for deciding, in
each state, what action the system should take to main-
tain system safety and drive the system towards its goals.
For example, Figure 2 illustrates a small portion of the

State 8
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)

State 6
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)

turn_on_main_engine warm_up_IRU2

State 3 **
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)

start_IRU2_warm_up

State 0
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)

Fig. 2. The beginning of a state space plan for Saturn Orbit
Insertion. In this diagram, the ellipse marks the initial state, other
states are rectangles, and the shaded state is a goal state.

Saturn problem’s state space, after the CSM has made
only its first few decisions about how to control the sys-
tem.

The CSM reasons about both controllable and un-
controllable transitions:
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Action transitions represent actions selected by CIRCA;
the CSM’s objective is to assign an action to each
reachable state. In Figure 2, a dashed arrow shows
that the system has chosen the action start_IRU2_-
warm_up in the initial state zero. Associated with
each action is a worst case execution time, an up-
per bound on the delay before the action occurs.
The special “do nothing” action “no op” can also
be used. Typically this is done when the controller
wishes to wait for some uncontrolled process to com-
plete. For example, the controller might begin warm-
ing up an IRU, execute no-op in the state where the
process of warming up is ongoing, and then designate
the IRU as the active IRU, when it has completed
warming up.

Temporal (uncontrollable) transitions represent uncon-
trollable processes. Associated with each temporal
transition is a lower bound on its delay. If the pre-
conditions hold true for at least this time, the tran-
sition may fire and enforce its postconditions. If a
temporal transition leads to an undesirable state, the
CSM may plan an action to preempt the temporal by
ensuring that the action will definitely occur before
the temporal could possibly occur. Transitions whose
lower bound is zero are referred to as events, and
are handled specially for efficiency reasons. Transi-
tions whose postconditions include the distinguished
proposition (failure T) are called temporal transi-
tions to failure (TTFs).

Reliable temporal transitions represent continuous pro-
cesses that may need to be employed by the CIRCA
agent. Reliable temporal transitions have both up-
per and lower bounds on their delays. For example,
when CIRCA turns on an Inertial Reference Unit it
initiates the process of warming up that equipment;
the process will definitely complete if it is continued
without interruption for some time, as shown by the
solid arrow leaving state 3 in Figure 2.

Note that each transition is an implicit description of
many transitions in an automaton model. Each of these
transitions is enabled in any discrete state that satisfies
its preconditions, and disabled everywhere else. We ex-
plain how these implicit descriptions work more precisely
in Section 6.

Central to the controller synthesis problem is pre-
emption. If a temporal transition leads to an undesir-
able state, the CSM may plan an action to preempt the
temporal:

Definition 1 (Preemption). A temporal transition may
be preempted in a (discrete) state by planning an action
for that state which will necessarily occur before the
temporal transition’s delay can elapse.

Note that successful preemption does not ensure that
the threat posed by a temporal transition is handled; it
may simply be postponed to a later state (in general, it
may require a sequence of actions to handle a threat). A

threat is handled by preempting the temporal transition
with an action that carries the system to a state which
does not satisfy the preconditions of the temporal.

3.2 CIRCA controller synthesis algorithm

Algorithm 1 (Controller Synthesis).

1. Choose a state from the set of unplanned reachable
states (at the start of state space planning, only the
initial states are reachable).

2. For each uncontrollable transition enabled in this
state, choose whether or not to preempt it. Transi-
tions that lead to failure states must be preempted.
The CSM creates a boolean constraint variable for
the preemption decision for each of these uncontrol-
lable transitions.

3. Choose a single control action or no-op for this state.
4. Invoke the verifier to confirm that the (partial) con-

troller is safe (see below for a discussion of how the
verifier is invoked on partial controllers). “Safe,” here
is defined as “does not make any transitions to the
distinguished failure state” and “successfully enforces
all of the preemption decisions made in step 2.”

5. If the controller is not safe, use a counterexample
from the verifier to direct backjumping and return
to step 1 [21].

6. If the controller is safe, recompute the set of reach-
able states.

7. If there are no unplanned reachable states (reachable
states for which a control action has not yet been
chosen), terminate successfully.

8. If some unplanned reachable states remain, loop to
step 1.

The search algorithm maintains the decisions that
have been made, along with the potential alternatives,
on a search stack. The algorithm makes decisions at
two points: step 2 and step 3. Preemption decisions are
boolean: the algorithm can choose to require preemption
or not, for each uncontrollable transition leading out of
a state. The set of alternative action choices for a state is
dependent on the domain description and several prun-
ing heuristics that eliminate applicable but inappropri-
ate actions from consideration.

Note that Algorithm 1 is implemented as an “on the
fly” algorithm: it expands the reachable sub-space of the
state space during its search. Unless forced to, it does
not expand the full (discrete) state space, which can be
exponential in the size of the input problem description.

3.3 Use of verifier

The CSM uses the verifier to confirm both that failure is
unreachable and that all the chosen preemptions will be
enforced. The CSM uses the verifier module after each
assignment of a control action (see step 4). This means
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that the verifier will be invoked before the controller is
complete. At such points we use the verifier as a con-
servative heuristic by treating all unplanned states as
if they are “safe havens.” Unplanned states are treated
as absorbing states of the system, and any verification
traces that enter these states are regarded as successful.

Treating unplanned states in this way constitutes a
conservative heuristic in the sense that any detected fail-
ure is definitely a true failure (soundness), but the ver-
ifier may fail to identify failures that will later become
apparent (incompleteness). At the limit, when the con-
trol program is complete, the verifier will be both sound
and complete.

When the verifier indicates that a controller is un-
safe, it will return a path from the initial state to the
distinguished failure state. The action choices that the
planner made for the states along that path form a set
of candidate decisions to backtrack and revise, as dis-
cussed in [21]. If no safe plan is possible, the overall
CSM may return failure, at which time the next higher
level of CIRCA, the AMP, would try to compose a dif-
ferent problem for the CSM, perhaps by omitting some
goals. The CSM algorithm will never return an unsafe
controller.

To verify safety in CIRCA plans, the CSM represents
the CIRCA control plans as timed automata. In the next
section we review timed automata, and following that we
explain the relationship between CIRCA control plans
and timed automata.

We continue to work on improving CIRCA and ap-
plying it in new domains. Recent work has included re-
search in using statistical verification to verify large CIR-
CA plans [22] and application to on-board autonomy for
satellites [12,23].

4 Timed Automata

A timed automaton is a nondeterministic finite automa-
ton (NFA) augmented with timing information [1] (our
notation has been adapted from the descriptions in [24]
and [25]).

Definition 2 (Timed Automaton). A timed automa-
ton A is a tuple

〈
S,si,X ,L, E , I

〉
where

1. S is a finite set of locations;
2. si is the initial location;
3. X is a finite set of clocks;
4. L is a finite set of labels;
5. E is a finite set of edges; and
6. I is the set of invariants.

Each edge e ∈ E is a tuple 〈s, L, ψ, P, s′〉 where s ∈ S
is the source, s′ ∈ S is the target, L ⊆ L are the labels,1

ψ ∈ ΨX is the guard , and P ⊆ X is a set of clocks to

1 Labels are used in parallel composition of timed automata,
which we do not use here.

reset. Timing constraints (ΨX ) appear in guards and in-
variants. Guards dictate when the model may follow an
edge, invariants indicate when the model must leave a
state. In CIRCA models, all clock constraints on guards
are of the form ci > k and all clock constraints on in-
variants are of the form ci ≤ k. In our models, all clock
resets re-assign the corresponding clock to zero; they are
used to start and reset processes.

The state of a timed automaton is a pair: 〈s, C〉.
s ∈ S is a location and C : X → Q ≥ 0 is a clock
valuation, that assigns a non-negative rational number
to each clock.

A timed automaton trace is a sequence of state tran-
sitions that represents the computation of a timed au-
tomaton. Corresponding to any timed automaton, A, is
a transition system, SA, with two types of transitions:
time-elapse transitions and discrete transitions:

Definition 3 (Time-Elapse Transition). A time-elapse

transition, 〈s, C〉 t→ 〈s, C + t〉 can occur when for all t′

such that 0 ≤ t′ ≤ t, C + t′ satisfies the invariant I(s).

Definition 4 (Discrete Transition). A discrete tran-

sition, 〈s, C〉 e→ 〈s′, C ′〉, for some e ∈ E can occur when
C satisfies the guard of e, ψ(e), and C ′ satisfies the reset
of e applied to C, P (e, C).

For brevity, we will refer to discrete transitions as jump
transitions or jumps in the remainder of this paper.

To understand CIRCA’s CSM graphs, the concept of
time abstraction is helpful.

Definition 5 (Time abstraction). The time abstrac-
tion of a timed automaton is a non-deterministic finite
automaton whose states correspond to the locations of
the timed automaton, and in which there is an edge e
between s and s′ whenever there exists s′′ and t such
that s

t→ s′′
e→ s′.

The CIRCA CSM graph is the time abstraction of a
TA model of the corresponding plan. The translation of
CSM graphs to TA models is described in Section 6.

Figure 3 illustrates the timed automaton model cor-
responding to our running example, the partial Saturn
orbit insertion plan shown in Figure 2. Since the CSM
has not yet completed the plan in Figure 2, the timed au-
tomata model has sinks at locations 4 and 5, correspond-
ing to the unplanned CSM states 6 and 8. Figure 4 illus-
trates the corresponding transition system reachability
graph, where boxes correspond to a reachable location
and clock zone, represented as a difference bound ma-
trix. The reachability graph shows that locations 4 and
5 are reachable, but since their corresponding states are
unplanned, the verification traces halt there. The plan
is safe so far, since failure is not reachable.

In this paper, we will concern ourselves primarily
with reachability verification of a particular timed au-
tomaton. We will be asking if it is possible for a timed
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RTA-Location 0
INIT
Invariant: ()

INIT
Guard: ()
Resets: (4 3 2 1)

RTA-Location 2
SSP-State 0
Action: start_IRU2_warm_up
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)
Invariant: (c(1) <= 1)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

#<ACTION start_IRU2_warm_up>
Guard: (c(1) >= 0)
Resets: (1 3)

RTA-Location 3
SSP-State 3
Action: turn_on_main_engine
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: (c(1) <= 1 c(3) <= 60)

#<ACTION turn_on_main_engine>
Guard: (c(1) >= 0)
Resets: (1 2)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

#<RELIABLE-TEMPORAL warm_up_IRU2>
Guard: (c(3) >= 45)
Resets: (1)

RTA-Location 5
SSP-State 6
Action: NIL
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)
Invariant: uninitialized

RTA-Location 4
SSP-State 8 **
Action: no_op
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: (c(3) <= 60)

#<TEMPORAL fail_if_burn_without_guidance>
Guard: (c(2) >= 1)
Resets: NIL

#<RELIABLE-TEMPORAL warm_up_IRU2>
Guard: (c(3) >= 45)
Resets: NIL

RTA-Location 6
SSP-State 10
Action: NIL
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 ON)
Invariant: uninitialized

RTA-Location 1
FAILURE
Invariant: ()

Fig. 3. The timed automaton model corresponding to Figure 2.
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RTA-State 0
Location 0 = SSP-State INIT
Invar: ()
Active clocks: NIL
Clock zone:
 <=0  <=0  <=0  <=0  <=0
 inf  <=0  inf  inf  inf
 inf  inf  <=0  inf  inf
 inf  inf  inf  <=0  inf
 inf  inf  inf  inf  <=0

INIT
Guard: ()
Resets: (4 3 2 1)

RTA-State 1
Location 2 = SSP-State 0
Invar: (c(1) <= 1)
Active clocks: (0 1 2)
Clock zone:
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0

#<ACTION start_IRU2_warm_up>
Guard: (c(1) >= 0)
Resets: (1 3)

RTA-State 2
Location 3 = SSP-State 3
Invar: (c(1) <= 1 c(3) <= 60)
Active clocks: (0 1 2 3)
Clock zone:
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=1  <=1  <=0  <=1  <=0
 <=0  <=0  <=0  <=0  <=0
 inf  inf  <=0  inf  <=0

#<ACTION turn_on_main_engine>
Guard: (c(1) >= 0)
Resets: (1 2)

RTA-State 3
Location 4 = SSP-State 8
Invar: (c(3) <= 60)
Active clocks: (0 2 3)
Clock zone:
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=0  <=0  <=0  <=0  <=0
 <=1  <=1  <=1  <=0  <=0
 inf  inf  inf  inf  <=0

#<RELIABLE-TEMPORAL warm_up_IRU2>
Guard: (c(3) >= 45)
Resets: NIL

#<TEMPORAL fail_if_burn_without_guidance>
Guard: (c(2) >= 1)
Resets: NIL

RTA-State 5
Location 1 = SSP-State FAILURE
Invar: ()
Active clocks: NIL
Clock zone:
  <=0   <=0  <=-1  <=-1   <=0
  inf   <=0   <=0   <=0   <=0
 <=60   <=0   <=0   <=0   <=0
 <=60   <=1   <=1   <=0   <=0
  inf   inf   inf   inf   <=0

RTA-State 4
Location 6 = SSP-State 10
Invar: uninitialized
Active clocks: (0 2)
Clock zone:
   <=0    <=0  <=-44  <=-45    <=0
   inf    <=0    <=0    <=0    <=0
  <=60    <=0    <=0    <=0    <=0
  <=60    <=1    <=1    <=0    <=0
   inf    inf    inf    inf    <=0

Fig. 4. The timed automaton reachability space corresponding to
Figure 2.

automaton to reach a particular location, s ∈ S. In
particular, we will be checking the safety of a CIRCA
plan by asking if a timed automaton corresponding to
the plan can ever reach the distinguished failure state.
While such reachability queries are not tractable, they
are computable, and can be answered by simple graph
search algorithms.

Algorithm 2 (Reachability Verification).

1: let openlist ← {〈si,0〉} {initial state}
2: while openlist 6= ∅ do
3: s← pop(openlist)
4: if visited(s) then
5: skip
6: else if not action-assigned(s) then
7: skip {For incremental verification, see below}
8: else if failure(s) then
9: return unsafe

10: else
11: let succ ← successors(s)
12: openlist ← openlist ∪ succ
13: end if
14: end while
15: return safe

Of course, any naive attempt to apply Algorithm 2
is doomed to failure. In particular, if one assumes dense
time, the state space of this search may be uncountably
large. Practical verification systems for timed automata
typically search in a space of equivalence classes of states,
since the state space of any timed automaton can be re-
duced to a finite number of equivalence classes [26]. Typ-
ically, a verification system will collapse together multi-
ple states using clock zones. In the following discussion
we will use “state” for both state and state equivalence
class; no confusion should result since any practical al-
gorithm will have to manipulate the latter, rather than
the former.

Verification systems also employ clever techniques for
reducing the number of states that must be explored, an-
swering the visited query (step 4, above), and comput-
ing the successor set (step 11). Furthermore, instead of
simply returning unsafe, reachability verification sys-
tems typically return a counterexample trace, that ex-
hibits a path from the initial state to the failure state,
and can be used for debugging. To the best of our knowl-
edge, CIRCA is unique in automating the exploitation of
counterexample traces in planning (see [21] for an expla-
nation of our technique for using counterexample traces
to direct backtracking in planning search). We will re-
turn to the skeletal search algorithm later and describe
modifications for our planning application.

Recall that the CSM verifies partial plans during con-
struction, before they are fully designed. Before the plan-
ning process is complete, there will be states that do not
yet have action assignments. We verify partial plans by
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treating such states as safe sink states. That is the func-
tion of the check in line 6 of Algorithm 2. Note that when
the planning algorithm (Algorithm 1) is completed, all
of the states will have an action assigned to them, so the
final verification will be a full verification. The sequence
of verifications can be thought of as a fixpoint computa-
tion that converges on a full TA verification of the CSM
plan.

5 Difference-Bound Matrices

As mentioned in Section 4, CIRCA’s verifier reduces the
size of its search space by collapsing states to equiva-
lence classes with respect to their temporal character-
istics. For example, given two automata states, 〈s, C1〉
and 〈s, C2〉, in the timed automata representing a CIR-
CA plan graph, if the clock assignments C1 and C2 differ
only in a single clock value, and that value exceeds any
edge’s test (guard or invariant) on the clock, then 〈s, C1〉
and 〈s, C2〉 can be treated as members of a single equiva-
lence class. Similarly, if C1 and C2 differ only in the value
of a single clock xi, and xi is only tested against 1 and 3,
it may be possible to collapse C1 and C2 into equivalence
classes based on the inequalities xi < 1, 1 ≤ xi < 2, and
2 ≤ xi. Since clock values are constrained to increase
uniformly, it is also straightforward to collapse states
in which multiple clocks differ, as long as relevant con-
straints are satisfied.

To support the required equality operation, the CIR-
CA verifier uses the difference-bound matrix (DBM) [27,
25] data structure to represent the set of clock values
in an automata state. To understand the nature of the
“fragmentation” problem and our “loop acceleration” so-
lution it is helpful to understand the basics of the DBM
structure.

Each DBM is a (k+1)×(k+1) matrix D representing
a clock zone for a state in the timed automaton for a
CIRCA graph.D will have k clocks x1, ...xk, representing
k− 1 uncontrolled transitions and the special controlled
action clock x1. For each i, Di0 is the upper bound on the
absolute value of clock xi and D0i is the lower bound on
the value of the clock xi. The other entries in the matrix
represent bounds on the relative distance between two
clock values. For all i and j for which we have clocks
xi and xj , the DBM entry Dij is the upper bound on
the difference between values of clocks xi and xj . To
allow for strict and non-strict bounds, each entry also
contains a second symbol (0 or 1) to indicate whether
the inequality of the bound between the clocks is strict
or not. The absence of a bound between xi and xj is
represented by ∞ in Dij . Thus, the domain, D, of the
Dij entries is Q× {0, 1} ∪∞.

Thus, a DBM D is a (k + 1)× (k + 1) matrix whose
entries are elements from D. A clock interpretation v sat-
isfies D iff for all 1 ≤ i ≤ k, xi ≤ Di0 and −xi ≤ D0i,
and for all 1 ≤ i, j ≤ k, xi−xj ≤ Dij . Although there are

more than one DBM describing any clock zone, there is
an algorithm for computing an unique, canonical DBM
for any clock zone. In order to implement Algorithm 2,
we must compute a successor zone for any DBM D pro-
gressing over an edge e, which can by achieved by a com-
bination of intersection, time-elapse, and projection
operations on clock zones.

Note Readers with an AI or constraint programming
background may notice the similarity between DBMs
and Simple Temporal Networks (STNs) [28]. These two
data structures represent the same class of constraints,
and both support emptiness (consistency) checks, how-
ever, they are implemented differently, in order to op-
timize different operations. STNs are typically used in
planning and scheduling problems where a set of tem-
poral variables are related together by an increasing set
of constraints. These constraints accumulate as the plan-
ning or scheduling problem is solved. Often there is back-
tracking, which involves the removal of constraints, and
often the set of variables is not fixed: new time points
may be added to the network. With DBMs used in timed
automaton verification, on the other hand, the set of
variables is typically fixed, and there is no backtrack-
ing. Operations to be optimized include checking to see
if one DBM is identical to another or contains another.
These checks are typically not needed in planning and
scheduling applications.

6 Modeling CIRCA with Timed Automata

Recall that as part of the CIRCA controller synthesis
process, we incrementally verify the quality of partial
plans, as they are generated (see step 4 of Algorithm 1).
To do so, we translate the CIRCA problem representa-
tion into timed automata, which involves expanding the
implicit representation of the state space.

6.1 Translating CIRCA problems to timed automata

Recall that CIRCA controller synthesis problems are
posed by providing an initial state description, and a
set of transition descriptions, partitioned into volitional
(controlled) and non-volitional (uncontrolled) transitions.
Taken together, these specify a timed automaton, as fol-
lows.

Definition 6 (CIRCA problem). A CIRCA planning
problem is a 4-tuple, P = 〈F ,V, T , i〉 In it, F = {f0...fm}
is a set of state features. For each fi ∈ F , Vfi = {vi0...viki}
is a set of possible values. The initial state specification,
i, is a full feature assignment (see Definition 7 below).
T = A ∪ U is a set of CIRCA transitions (defined

further below), that is partitioned into controllable (A)
and uncontrollable (u) transitions. For historical reasons,
these are sometimes referred to as volitional and non-
volitional transitions.
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All CIRCA problems contain a distinguished failure
feature, whose possible values are >,⊥ (true and false).
Failure is always false in the initial state. Note that any
simple safety property, �φ, or �¬φ can be captured with
use of the failure feature. More complex safety properties
can be encoded by compiling them into the transition
definitions, but we rarely have the need to do this.

Definition 7 (Feature Assignment). A feature value
assignment, 〈f, a〉, maps a feature to one of its possible
values. A feature assignment, A, is a set of feature value
assignments for a subset of F . The set of features whose
values are specified by A is feats(A). A full feature as-
signment is a feature assignment where feats(A) = F .
Finally, we can project a feature assignment onto a sub-
set of features, G ⊆ F : πG(A), by removing the elements
of A whose features are not in G.

Definition 8 (CIRCA transition description). A
CIRCA transition is a 4-tuple, t = 〈N,P,E,∆〉. N is
the name of the transition. P , the precondition, is a fea-
ture assignment, as is E, the effect of t.2 ∆ is a set of
time bounds on the occurrence of the transition, a pair,
〈lb(t),ub(t)〉, of lower and upper bound, which we will
discuss further below. For technical reasons, we require
that P and E be inconsistent : E must assign a different
value to at least one of the features in P .

The set of locations of the timed automaton corre-
sponding to P is defined by F and V: it is the set of all
possible full feature assignments. Each location, l cor-
responds to a unique feature assignment, which we will
write as fa(l).

To complete the construction, we need additional def-
initions to translate the CIRCA transition descriptions
into sets of transitions in the timed automaton. The first
is the definition of applicability of a CIRCA transition:

Definition 9 (Applicability of CIRCA transition).
A CIRCA transition, t, is applicable at a location, l,
when the feature assignment of l satisfies the precondi-
tions of t: fa(l) |= P (t).3

The set of transitions that are applicable at l is app(l).
We will have need of the set of uncontrollable transitions
at l, appU (l) = app(l) ∩ U .

Then we must define the translation of each CIRCA
transition to one or more edges in the timed automaton:

Definition 10 (Image of CIRCA transition). The
image of a CIRCA transition, t, from location l, img(t, l)→
l′, is the location l′ such that:

fa(l′) =
(
fa(l)− πfeats(E(t))(fa(l))

)
∪ E(t)

2 CIRCA actually supports nondeterministic transitions that
have multiple different effect feature assignments, but for this pre-
sentation we ignore that complication.

3 Because of the simplicity of the feature-value representation,
for any two assignments, A1 and A2, A1 |= A2 iff A1 ⊇ A2.

I.e., the successor state is updated by the effects of t.

Definition 11 (Clocks for CIRCA transitions). For
each uncontrollable CIRCA transition, t, we define a
unique clock, c(t). Note that a single CIRCA transition
will correspond to multiple edges in the timed automa-
ton.

There is a single clock, cRTS, that governs the func-
tion of all of the controlled actions.

Finally, we need the definition of a CIRCA plan, or
controller design:

Definition 12 (CIRCA plan). A CIRCA plan for P,
ΠP , is a partial function from locations of P to control-
lable transitions or no-op. For brevity, we will simply use
Π in the following.

The CIRCA plan is similar to other AI planning sys-
tems, and similar to deterministic Markov Decision Pro-
cess policies, in assigning a single action to each state. In
this way it diverges from the discrete controller model of
Ramadge and Wonham [29] which disables some subset
of the controllable transitions for a state.

Definition 13 (Translation of CIRCA transition).
The translation of a CIRCA transition, t at a location,
l is:

φ(t, l) = 〈t, l, clock(t) ≥ lb(t),R(l, img(t, l)), img(t, l)〉

if t is applicable in l, otherwise nothing.

The set of clocks reset by the timed automaton edge,
R(l, img(t, l)), is as follows:

1. For each uncontrolled transition, t′ that is applica-
ble at img(t, l) and that is not applicable at l, add
clock(t′);

2. If Π(img(l)) 6= Π(l), add cRTS.

All resets are to zero.

To complete the construction, we need to specify the
invariants of all of the locations in the timed automaton:

Definition 14 (Location invariants). The location
invariant of l, I(l), is the following conjunction: ∧

t∈appU (l)

clock(t) ≤ ub(t)

 ∧X
Where X is cRTS ≤ ub(Π(l)) unless Π(l) = no-op, in
which case X = >.

We notate the resulting translation as θ(P).

A CIRCA plan, Π, is complete if the set of locations
in its domain is a subgraph of the timed automaton that
is closed under reachability.
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Not 
threatened 
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Fig. 5. An example of the pathological situation causing state-
space fragmentation. Controlled actions are shown as dashed
edges, uncontrolled as solid.

6.2 Verifying CIRCA plans

In order to verify a (partial) plan, Π, we translate it into
a timed automaton (TA) model, θ(Π), using the above
construction. We search the resulting model to verify the
proposition ¬ � failure. We do this using an “on the fly”
construction method so that we only build a reachable
subspace of the timed automaton.

As mentioned earlier, we conduct this verification
multiple times, while constructing the plan, per our dis-
cussion of incremental verification in Section 3.3. To do
so, we must verify partial plans, as well as complete
plans. While doing so, any state on the frontier of θ(Π)
– i.e., a state that is reachable from an element of Π
but that has not yet been assigned an action or no-
op, is made an absorbing state. This has the effect of
treating these states as safe havens, giving us an over-
approximation of the safety of the plans, which converges
on a true verification.

7 The Problem: Reaction Loops

Some patterns of interaction between a CIRCA con-
troller and its environment, in a CIRCA plan, cause state
space explosion when verifying. Hendriks and Larsen [8]
refer to this state space explosion as fragmentation, be-
cause it is a failure of the timed automaton verifier’s
abstraction methods in which the verifier cannot exploit
repeated structure. Fragmentation occurs when a high
speed process interacts with a slow one. In control sys-
tems, this typically occurs when a digital control system
(fast) interacts with its environment (slow).

Examples arise in the following situations: CIRCA
is controlling a system in an environment that presents

the system with repeated threats, while a slow process
carries the system towards a state where it can achieve
its goals. For example, a vehicle might have to carry
out small course corrections in response to obstacles in
its path, while it is navigating to its destination. See
the CIRCA-generated controller design in Figure 5. The
system can rapidly respond to the need for a course cor-
rection, where “rapidly” means that the duration of the
response transition is small relative to the duration of
the process of reaching the destination, and the need for
course corrections can also recur frequently. One more
complication is necessary — there must be another tran-
sition out of the “unthreatened” state (the one where no
course connection is necessary), that will impose an in-
variant on that state. For example, while the vehicle is
navigating smoothly, but before it has reached its desti-
nation, it might wish to seize the opportunity to send a
message to base that will update information about its
current state.

Intuitively, what happens during verification is that
the verifier first considers what happens if it must cor-
rect its course early in the course of a traversal, and
then later, and then later, and then later, and . . . The
verifier considers every way that the clocks represent-
ing the course correction processes might interact with
the clocks for the navigation process and opportunity ex-
ploitation. Consider what happens during forward search,
when the system considers the state where the vehicle is
threatened with collision (l1), and is navigating towards
the destination. At this point, the clock on “reach des-
tination,” c1, starts at zero. After j time units expire
on this clock, the system may make a discrete transition
corresponding to reaching its destination. If the vehicle
does not take corrective action before time k, it may
crash. More formally, when entering l1, c2 is reset to
zero, and after k time units, the Crash jump is enabled.

In this threatened state, the controller takes an ac-
tion to correct its course. This action has some duration,
m, much smaller than j. That duration imposes an in-
variant on l1; the system cannot remain in l1 more than
m time units before transitioning. Reaching the bottom
location, l2, the controller attempts to send a message,
an action that takes n time units. The maximum de-
lay, n, also imposes an invariant, this time on location
l2. n is also much smaller than j. This action may suc-
ceed, or the vehicle may encounter an obstacle before
n time units elapse, returning the system to l1. In the
resulting state, of the system the location will again be
l1, and c1 ≤ m + n. The next time around the loop,
c1 ≤ 2(m + n), and so forth. When j is large relative
to m and n, the resulting number of search states in
the verifier can be very large, and can make reachability
testing infeasible.

The clock zone techniques for collapsing the temporal
state space [26] fail to partition the state space into a
small number of equivalence classes, and the state space
becomes fragmented. In practice, this problem can cause
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Fig. 6. An illustration of the subgraph pattern (in the timed ab-
straction graph) that provides candidates for loop acceleration in
CIRCA.

CIRCA to fail to find plans in important cases — the
reaction loop problem is not at all uncommon in safety-
focused controllers. Note that if there is no invariant in
the second state of the loop, like the one provided by
“send message,” if all we are concerned with is reaching
the destination eventually, then the pathology does not
arise; clock zone techniques (based on difference-bound
matrices) are sufficient.

Note that the number of loops is not relevant to
the safety of the controller. For the purpose of checking
safety, the only two things that matter are (1) whether
the system can follow the “crash” transition and (2)
what is the state of the clocks when it leaves the loop
through either reaching the destination or sending a mes-
sage. The first question can be answered by simple static
inspection, whether the k lower bound on crashing is
greater or less than the m upper bound on evasive ma-
neuvers. We will not consider this question further in
the paper. Our focus will be on efficiently answering the
second question, noting that the number of iterations
around the loop, and the individual dwell times in each
location are of no interest in and of themselves.

8 Loop Acceleration for Reaction Loops

In this section, we discuss how we optimize away the
state space fragmentation we just described. In CIRCA’s
TA verifier, while performing the search described in Al-
gorithm 2, we look for instances of the pattern of states
and transitions forming a reaction loop that is a candi-
date for acceleration. Then we rewrite the successors so
that we generate just three states per loop, no matter
how many iterations the loop makes, in a kind of local
optimization.

In the course of verification, our technique looks for
candidates that meet the reaction loop pattern described
in the previous section. We show an example of this pat-

tern in Figure 6. Specifically, in the forward verification
search, the verifier checks for states where:

1. There is a backedge from the current location, to the
location from which the current state was reached.

2. There is a long-duration process with a lower bound
on its completion time (in CIRCA terms, a temporal)
that is active in both of the locations.

3. There is a CIRCA transition in the current loca-
tion, other than the backedge, that imposes an upper
bound (invariant) on the state dwell time.

More formally, when checking a successor, s, for loca-
tion l, reached by transition t, we check the following
conditions:

1. Backedge: ∃t′|t′ = l→ l′ and t = l′ → l;
2. Long duration process: There exists a CIRCA tran-

sition, T , such that

∃t′, t′′|t = l′ → l, t′ = φ(T, l), t′′ = φ(T, l′)

and the lower bound on the clock for T is “large,”
where “large” is a threshold that may be set as a
parameter of the optimization.

3. Upper bound on the state dwell time: I(l) 6=∞.

The presence of the backedge (1), of course, is nec-
essary for there to be a loop that we can accelerate.
However, while necessary, this is not sufficient. If we
have only the backedge and the long duration process
(2), then the difference-bound matrices will efficiently
abstract the state space of the timed automaton, and
there will be no fragmentation. It is only if we add the
separate upper bound (3), that we encounter fragmen-
tation.

In the context of the CIRCA solver, the very large
loop-related state space ordinarily generated by a reac-
tion loop can be collapsed into only three states:

1. A state for the top location, entering the loop;
2. A state for the bottom of the loop location and
3. A state for the top location, in iterations after the

first entry.

The reason that this is possible is that we can com-
pute the possible states of the various clocks upon leav-
ing the loop without explicitly enumerating the states
relating to the two clocks that control the loop proper.
The loop clocks will behave the same way upon exit from
the loop no matter how many times the loop is executed
(with the exception of the first entry into the loop, which
is why we have three states, instead of two. We may rea-
son by cases about all of the other clocks. During the
loop, the other active clocks will be related to each other
(and to the loop clocks) in one of two ways:

1. They will be synchronized (possibly with some off-
set), when they enter the loop, and will stay syn-
chronized or

2. They will be unconstrained with respect to each other.
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Note that when we say “synchronized (possibly with
some offset)” what we mean is that the clocks will be
at some bounded distance from each other — not neces-
sarily zero — and that this distance will not change, no
matter how many times they go through the loop.

Which of the two possibilities — clocks stay synchro-
nized, or clocks may stray an arbitrary distance — ob-
tains depends on what happens when the system passes
through the transition that corresponds to the backedge.
All of the clocks that are reset by this transition will be
reset to zero and will become (perfectly) synchronized.
The others will be unaffected, so the relations among
them (synchronized or not) will remain, and they will
be desynchronized from the clocks that are reset. Note
that this simplification occurs partly because of three
special features of CIRCA timed automata:

1. Each discrete transition is controlled by exactly one
clock, with a guard that is controlled by constants.
There may additionally be state invariants, that come
from urgent discrete transitions: these are also tested
against constants. That is, there are no constraints
that directly relate two clocks together (although some
such constraints may be inferred in the closure com-
putations over the DBMs).

2. When a discrete transition is followed, the clock con-
trolling that transition will either be reset, or will
become inactive.

3. The verification effort aims at checking reachability
of states (in our case, the distinguished failure state)
that are not included in any loop.

These are not requirements of the TA model, but we
believe that they are common features of many control
systems where a discrete controller must interact with
temporally-extended processes.

The DBM implementation of timed automata sub-
stantially reduces the state space by reasoning efficiently
with equivalence classes of clock valuations. The combi-
nation of the special features of CIRCA and the loop
structure allow us to collapse the TA state space even
further, and construct equivalence classes that are larger
than the ones already captured by the DBM abstraction.
We may simply remove the upper bounds on any clock
that is not reset in the loop since it can grow without
limit until the system exits the loop. We still enforce the
state invariants imposed by transitions leaving the loop,
so clock values cannot grow to values inconsistent with
urgent transitions leaving the loop. We enforce the syn-
chronization constraints which do not change between
loop iterations, and thus capture the exit conditions (the
state of the clocks upon leaving the loop) very simply in
difference-bound matrices. We also do a simple static
check to verify that the state of the system in the loop
remains safe, as well.

Loop acceleration procedure The actual loop accelera-
tion is done by a local, “peephole” optimization during

forward state space verification search. In Algorithm 2,
when we create the successors to state, in line 11, we
check each successor to see if it is a candidate for loop
acceleration, according to the criteria outlined above. If
the successor is a candidate, we replace it according to
Algorithm 3. In particular, our algorithm will rewrite
two states for each loop: it will initially detect the op-
portunity to accelerate when the search reaches a state
corresponding to the bottom of the loop. At that point
it will recognize the backedge and accelerate the state
corresponding to reaching the location at the bottom of
the loop. Then it will create a second accelerated state
corresponding to returns to the top of the loop.

Algorithm 3 (Loop acceleration rewrite).

1: proc accelerate search state(s, t) {State s reached
via t}

2: let r ← P (t) {clocks reset}
3: let nr ← activeclocks(s)− r {clocks not reset}
4: for all c ∈ nr do
5: for all c′ ∈ r do
6: desync(dbm(s), c, c′)
7: end for
8: {Remove upper bound: 0 ≤ c <∞}
9: dbm(s)[0, c]← (0, 1)

10: dbm(s)[c, 0]←∞
11: end for
12: {now conduct normal DBM updates ...}
13: dbm(s)← dbm(s) ∩ I(s))
14: dbm(s)← elapse time(dbm(s))
15: dbm(s)← dbm(s) ∩ I(s))
16: if empty(dbm(s)) then
17: return false {infeasible}
18: else
19: return true {feasible}
20: end if

Recall that P is the set of clocks reset by a timed
automaton transition. I(l) is the invariant for a timed
automaton location, l; we extend it to search states by
projection: I(s) = I(l) for s = 〈l, C〉. Notation is as per
Definition 2. dbm(s) is the difference bound matrix cor-
responding to the search state s. Clocks in the procedure
are counting numbers; c0 represents the numerical zero
value. The operations in lines 13-15 are the standard
operations for computing a successor difference bound
matrix, per Alur’s survey article [25].

The desync(·, ·) procedure desynchronizes its two ar-
gument clocks. It does this by relaxing constraints on the
distances between the two clocks:

proc desync(dbm, c1, c2)
dbm[c1, c2]←∞
dbm[c2, c1]←∞
The modifications of standard TA successor DBM

computations in Algorithm 3 are above line 13: clocks
for transitions that are not reset in the back-edge tran-
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sitions are desynchronized from clocks that are, and ad-
ditionally their upper bounds are removed. The intuitive
justification for these modifications is the case analysis
above: the desynchronization only affects the relation-
ship between clocks that are reset by the back edge, and
those that are not. Clocks that are not reset will retain
the interrelationships that were established on entry into
the loop. We justify this intuition in the next section.

Example 2. Consider how the optimization would be ap-
plied to the situation in Figure 5. In the verification
search, we encounter l1, which is processed normally:

The verifier will try to generate a successor for reach-
ing the destination. The outcome of this is not of interest
for our discussion; we pass over it. Next, the verifier will
attempt to generate a successor for the “Crash” state.
If it succeeds, verification will terminate with a coun-
terexample, so let us assume that it does not (i.e., that
m < k). Finally, the verifier will generate a successor for
l2.

At this point, the verifier will detect the possibility
of loop acceleration, and will perform the modifications
described in Algorithm 3 to the DBM of the correspond-
ing search state. It will generate successors for reaching
the destination, and sending a message, assuming that
they are consistent with the temporal constraints. It will
also generate a successor for the back-edge, “encounter
obstacle,” that returns the system to l1. When it does
so, it will apply the same optimization to the DBM of
the search state. It will attempt to generate out edges
as per normal, but the successor state for l2 will be rec-
ognized as already closed, so no further loop states will
be generated.

The current version of CIRCA incorporates our loop
acceleration technique as an option. On many scenarios
this optimization speeds up problem solving sufficiently
to make previously infeasible problems solvable. In the
next two sections, we demonstrate the correctness of the
algorithm, then present test results.

9 Proof of Correctness

In order to prove our technique correct, we must show
that it does not change the outcomes of any verification.
We do this by showing that for any trace, T , passing
through an accelerated loop, that is found by the stan-
dard verification algorithm, there exists a correspond-
ing trace, T ′, found by the accelerated verification algo-
rithm. The correspondence preserves the clock valuation
on the state immediately following the loop, ensuring
that the results of verification are preserved.

Lemma 1 (Loop acceleration equivalence). For any
sub-trace,

〈lpre, Cpre〉 →(
〈ltop, C0〉

δ→ 〈ltop, C1〉 →(
〈l, C〉 δ→ 〈l, C ′〉 →

)∗)
〈lpost, Cpost〉

found by the standard verification algorithm, there exists
a corresponding path that will be found by the accelerated
verification algorithm:

〈lpre, Cpre〉 →(
〈ltop, C0〉

δ→ 〈ltop, C1〉 →[
〈lbot, C〉

δ→ 〈lbot, C ′〉 →(
〈ltop, C ′′〉

δ→ 〈ltop, C ′′′〉 →
)

?

]
?

)
〈lpost, Cpost〉

That is, the trace from the accelerated loop enters the lo-
cation immediately outside the loop with the same clock
valuation as the un-accelerated sub-trace. Here “*” is
Kleene star, “?” is zero or one, l ∈ {ltop, lbot} and lpost 6∈
{ltop, lbot}.

Less formally, for every path through a loop in the orig-
inal model, there is a corresponding trace in the accel-
erated model that ends in the same state.

Proof (Iff).

Base model path implies accelerated path: Assume that
there exists an exit state, 〈lpost, Cpost〉, generated by
the original model that is not generated by the ac-
celerated model.
There are two cases:

Case 1. The path enters ltop and then exits the loop
on the next discrete transition. In this case the proof
is immediate, since the loop acceleration procedure
does not change the path at all.

Case 2. The path goes at least once through the loop
before exiting. In that case there must be some state
in the loop, 〈l, C〉 for l = ltop or l = lbot, and t a dis-

crete transition, such that 〈l, C〉 t→ 〈lpost, Cpost〉 and
C is not contained in the DBM of the correspond-
ing accelerated search state, but C is contained in
the DBM of a standard search state. That follows
because the transition t is not changed by the loop
acceleration: if the destination state is not reachable,
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and the transitions are the same, the predecessor
state must be unreachable.
This is a contradiction, because the accelerated DBMs
are relaxations of the corresponding base model DBMs,
since the loop acceleration only removes constraints.
It follows from this that any clock states contained in
the zones of the base model verifier will be contained
in the zones of the accelerated model.

Accelerated path implies base model path: As in the pre-
vious direction, we may ignore paths that enter only
ltop and leave the loop immediately.
So we assume that there is a path that enters both
states at least once, and then reaches 〈lpost, Cpost〉.
So there must be 〈l, C〉 for l = ltop or l = lbot, and t a

discrete transition, such that 〈l, C〉 t→ 〈lpost, Cpost〉,
and C is contained in the DBMs of only the acceler-
ated model, and not of the base model checker.
There are two ways this could happen, corresponding
to the two modifications made by Algorithm 3: either
there are two clocks, c and c′ desynchronized by line 6
that should not be desynchronized; or there is some
clock, c, whose value is too high: the removal of upper
bounds (lines 8-11) is incorrect.

Case 1 (Incorrect desynchronization). Without loss
of generality, we assume that clock c is reset by the
loop edge, and clock c′ is not, and in the accelerated
state, c − c′ is higher than is permitted by the base
model. This cannot happen, because lower bounds on
the transition times cannot prevent the clocks from
diverging from each other: as the distance between
transitions grows, the distance between clocks reset
and clocks not reset only grows. Upper bounds on
the transition times in the CIRCA model, which can
keep the clocks from diverging, are not relaxed by
the loop acceleration operations.

Case 2 (Clock value too high). In this case, there
must be some clock, c, not reset by the loop, whose
value is too high. But this cannot happen, since any
clock that is not reset by the loop will grow mono-
tonically as we go around the loop. Any bounds on
such a clock must be imposed by urgent transitions
out of the loop. But such urgent transitions impart
their constraints as invariants on the locations, and
loop acceleration does not relax invariants.

Theorem 1 (Loop acceleration preserves verifica-
tion results). For all traces, t explored by the standard
verification algorithm, either (a) there is a correspond-
ing trace in the loop-accelerated verification algorithm,
according to Lemma 1, (b) the trace is also generated by
the loop-accelerated algorithm, or (c) the trace does not
reach the failure state.

Proof. We may partition the set of traces into three
subsets:
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Fig. 7. The first 56 of 62 verifier runs in this single-threat domain
are fairly quick even without loop acceleration. The final six runs
illustrate long-duration reaction loops that cause the original ver-
ifier to perform very badly; the loop-accelerated verifier continues
to perform well.

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50

V
e
ri

fi
e
r 

ru
n
ti

m
e
 (

m
s)

Verifier run

No accel
Accel

Fig. 8. Zooming in on the data in Figure 7, we can see that even in
the first 56 verifier runs, the loop-accelerated verifier outperforms
the original.

1. Traces that never enter an accelerated loop;
2. Traces that enter an accelerated loop and never leave

that loop;
3. Traces that enter an accelerated loop and depart.

Traces of type (1) will be generated identically by the
loop-accelerated verifier, so fall into case (b). Traces of
type (2) cannot enter a failure state, because of the struc-
ture of CIRCA models; ergo they fall into case (c). Traces
of type (3) have corresponding loop-accelerated traces,
by Lemma 1.

Having shown that the loop acceleration procedure is
sound, we proceed to demonstrate its utility in the next
section.

10 Experimental Results

Our initial evaluation of the loop acceleration technique
indicates that it can provide tremendous benefit to the
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CIRCA verification system, and rarely incurs any cost
that makes it worse than the baseline verification ap-
proach. For example, the graphs in Figure 7 and Fig-
ure 8 show the significant improvement in verification
time in the course of planning a controller for a repre-
sentative problem domain. The planning domain mod-
els a spacecraft in which a solar observing spacecraft
stationed at the L1 Lagrange point must expose a sen-
sitive instrument to possible damage in order to achieve
its science goals. The planner searches for a controller
that will safe the instrument before a possible solar flare
can damage it. Although flares can be detected when
they occur, the planner must analyze the race between
the complete observation transition and the flare

damages instrument transition to decide whether it is
necessary to power off the instrument immediately or it
can wait until the observation has been completed. This
creates a “reaction loop” as described in Section 7.4

The graphs in Figure 7 and Figure 8 show the time
required by each call to the verification subroutine (i.e.,
step 4 of Algorithm 1). Each time the planner chooses
a controlled action for a new state, it invokes the veri-
fier to ensure that failure is not reachable in the current
partial plan. In this case, CIRCA calls the verifier 62
times in the course of planning. Every partial plan is
safe. So, the plan becomes steadily larger and the verifi-
cation problem becomes increasingly difficult. However,
the planner’s state space size alone does not determine
verification time. As we have seen, plan loops can cause
an explosion in the verifier’s state space. As shown in
Figure 7, the verification problem becomes qualitatively
more difficult at the 57th verification. Without loop ac-
celeration, the verifier state space grows from 2145 states
to 102,329 states, and the time to verify increases by a
factor of 1140 (from 573 to 653,303 milliseconds). The
verifier with loop acceleration recognizes the loop, so its
runtime grows by less than a factor of two (increasing
from 139 to 253 milliseconds). It is significant that the
runtime of the unaccelerated verifier depends on the du-
ration of the slowest temporal bounding the loop. In the
accelerated verifier, the runtime is unaffected by the du-
ration of any transition involved in the loop. Overall, the
loop-accelerated planning system builds a verified plan
in a total of 3.6 seconds, while the original system re-
quires over 4000 seconds.5

In domains where the planner does make poor choices,
creating partial plans in which failure is reachable, the
loop acceleration can provide another huge benefit: the
counterexamples it produces (necessary to guide back-
tracking as described in step 5 of Algorithm 1) can be
dramatically shorter than those produced by the non-
accelerated verifier. For example, in a variation of the

4 Source for the evaluation domain is available at http://www.

musliner.com/david/papers/sttt2013loopacceldata.html.
5 Timing information was obtained by running on a Linux com-

puter with an Intel Duo2 dual core 2.4GHz CPU (4800 BogoMips)
and 6 gigabytes of memory.

solar observer domain with an additional possible failure
condition, the planner makes some action choices that
create partial plans in which failure is reachable. After
the fifth action choice, the partial plan allows for the
instrument to be exposed long enough to a flare to dam-
age the instrument, which is considered a domain fail-
ure. The verification of this partial plan using the non-
accelerated verifier required 164 seconds, expanded over
20,000 states, and returned a counterexample of 20,002
states. Of the 20,002 states in the counterexample, the
same two state cycle repeated 10,000 times. In contrast,
the loop accelerated version completed the whole plan-
ning problem in less than a tenth of a second and, on
the same fifth verification, its counterexample was just
six states long.

11 Conclusions

We have described a new loop acceleration technique
that can dramatically speed up timed automata verifi-
cation. While we have developed this technique in the
context of CIRCA planning, it is quite general, because
CIRCA creates practical discrete controllers that are
modeled by common timed automata forms, and resem-
ble the controllers that occur in other practical domains.
Our technique applies to all timed automata safety veri-
fication problems that match the single-threat two-state
loop pattern we have described.6

Our work in this area is ongoing. We are working to
generalize the loop acceleration technique to applicabil-
ity beyond simple two-state reaction loops. Although our
current technique has substantially expanded the set of
problems that CIRCA can solve, by speeding up a com-
mon pattern, we would like to extend its applicability to
problems where instead of simple loops of states, there
are “meshes” of states created from multiple threats in-
teracting with the system, potentially interleaving.
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