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ABSTRACT

In this project, we developed a technique for extracting
useful information from databases that contain both fixed-
format and free-text fields. The present state of the art in
data mining is a schism between techniques that handle only
fixed-format data (pattern recognition, classification algo-
rithms from machine learning), and techniques designed for
free-form text (information retrieval). Advanced knowledge
discovery technologies have been developed in both research
areas, but systems that can categorize or cluster records con-
taining both kinds of data are still lacking. Specifically, we
examined database records from a Honeywell service center
to extract information about the expected cost of different
kinds of service requests. Our goal was to test the hypothe-
sis that incorporating information from free-text fields would
provide a better categorization of these records; in this case,
better predictions of the cost of the service call. In our
work, we have integrated feature extraction and clustering
techniques from information retrieval with classification al-
gorithms from machine learning in order to categorize the
hybrid fields. Owur preliminary results suggested that in-
corporating free-form text could potentially induce better
classification models.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

1. INTRODUCTION

Textual data mining is a rapidly growing application of knowl-
edge discovery in databases (KDD) due to the ever-increasing
volume of structured and unstructured documents produced
by large organizations. In this project, we developed an
automatic technique for extracting useful information from
databases that contain both fixed-format and free-text fields.
At present, most of the techniques developed in the area of
data mining and information retrieval are designed to han-
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dle only fixed-format data or free-form text, but not a com-
bination of both. There are many application domains in
which both fixed-format and free-form data are available.
For example, an e-commerce Web site may collect profiles
of their customers as fixed-format data as well as users’ re-
views about their products in free-form text. Incorporat-
ing both types of information into the data mining task en-
hances our understanding of the domain, but also increases
the complexity of the problem. In this project, we examined
database records containing both types of data from a Hon-
eywell technical assistance center, which provides telephone
support for industrial control products such as distributed
control systems, automatic valves, sensors, etc. We were
interested in gaining insights about the nature of problems
handled, and the expected cost of different kinds of service
requests.

Service center directors would like to determine what types
of cases are the most expensive to service (where cost is mea-
sured in terms of call frequency and call duration). A direc-
tor can easily find out what it costs to provide support for
each product, by summing over all cases with the same code
in the product field. But knowing which are the most expen-
sive products to support is not enough, the director has to
know what makes them expensive to choose an appropriate
corrective action. Are these cases due to hardware failures,
poorly-written documentation, installation problems or con-
figuration problems? These questions cannot be answered
with a simple database query, because the information is
buried in the engineers’ notes. Our goal is to develop a clas-
sification model for service center case records containing
both free-text and fixed-format data fields. This model will
be useful for improving customer services as well as identi-
fying flaws in existing products. For example, [4] developed
a system to automatically categorize in-coming email mes-
sages at a call center in order to improve customer care.
However, they used only free-form email messages to clas-
sify the calls into one of the 47 different categories. The
accuracies of their system varied between 22% up to 56%,
depending on the classification algorithms and linguistic pre-
processing methods used.

In our work, we have combined techniques from information
retrieval and machine learning into a novel method of cate-
gorizing hybrid fixed-format and free-text fields. Our initial
results suggest that incorporating free-text information can
potentially induce better classification models.



2. SYSTEM OVERVIEW

In this section, we present an overview of our service cen-
ter textual data mining system (Figure 1). It is an off-line
knowledge discovery system, consisting of 3 main compo-
nents : data extraction, preprocessing and data mining mod-
ules. The functionality of each module is described below.

2.1 DataExtraction

At the Honeywell Service Center, all requests for customer
support are recorded in a call tracking database. The infor-
mation stored in this database contains both fixed-format
and variable-format (free-text) fields. The fixed-format fields
contain attributes such as the case number for each service
request, type of problem encountered, the number of engi-
neers who handled the case, product ID, customer informa-
tion and the amount of time spent to resolve the problem.
These fields have strict formatting restrictions in terms of
attribute type, range and precision of the attribute values.
For example, the total time field is measured up to one-tenth
of an hour.

The free-text field contains a case description written by
the engineers who handled the case. Because this field is
unstructured, it may contain both relevant and irrelevant
information for categorizing the particular case. This is fur-
ther complicated by the different styles and languages used
for writing the description. For example, some of the de-
scription may contain Spanish text, followed by an English
translation of the text.

The data extraction module extracts only relevant features
from the call-tracking database. These features were ini-
tially identified with the help of domain experts. Our data
extraction module is implemented with SQL scripts to ex-
tract the important fields and store them in flat files for
further processing.

2.2 Preprocessing and Feature Selection

To classify the case records, each record has to be converted
to a vector in a feature space. For the fixed-format fields
such as customer and product, the feature space is defined by
their limited possible values. For free-text fields, statistics
based on the frequencies of certain words and phrases form
the feature space. The classification algorithm then uses the
feature vector corresponding to the case record to evaluate
some desired attribute of the case.

In our text mining system, the fixed-format fields require
minimal preprocessing. For example, we translate the al-
phanumeric values of some of the fixed-format fields into
suitable numeric ids, and consolidate the different variations
of NULL values. For free-text fields, construction of the fea-
ture vector involves two steps : preprocessing and dimension
reduction. Preprocessing of the free-text fields requires more
robust techniques to handle problems such as spelling errors,
abbreviations, multilingual text, etc. Figure 2 illustrates the
steps needed to transform the raw free-text data into a fea-
ture vector representation.

The first step of preprocessing is text conversion, which con-
verts a portion of the free-text description into a form more
suitable for subsequent preprocessing steps. This includes
removing irrelevant sentences within the free-text field (such

as the signature or timestamp of email messages); trans-
forming the different morphological variants of a word into
the same lexical unit; handling common spelling mistakes,
run-ons and word splits; substituting common expressions
with keywords (such as replacing 128.08.10.10 with “IP ad-
dress”), etc. This step was implemented with a set of con-
version rules specifying the patterns to look for within the
free-text field and the lexical units with which they should
be replaced.

Tokenization breaks the free-text sentences into smaller units
called tokens. Our system uses white-space characters as de-
limiters for a token. The disadvantage of this method is that
multi-word phrases (“shut down”, “IP address”, etc.), are
broken up into separate tokens. We reduce the severity of
this problem by identifying the most common word phrases
and replacing them with a single lexical unit during the text
conversion step.

The term separation step partitions the tokens into five
distinct categories : keywords, proper names, alphabetical
strings, symbolic terms, and low-frequency terms. A list
of keywords containing important product and parameter
names is used to distinguish between keywords and non-
keywords appearing in the free-text field. Irrelevant proper
names, symbolic tokens (consisting of digits and other non-
alphabetical symbols), and low-frequency tokens are removed
during this step. A list of proper names of people and places
is used to filter out irrelevant names from the list of to-
kens generated by the tokenization step. The low-frequency
terms are removed by applying a user-specified threshold
on the token list. Only keywords and alphabetical strings
(tokens containing only alphabetical letters) are used to con-
struct the feature vectors.

The alphabetical strings then undergo further preprocess-
ing steps, which include conversion to lower case, stopword
removal, spelling check, and stemming with Porter’s suffix
removal algorithm [10]. However, stemming may produce
conflicts between the stemmed words and keywords. For
example, the word basically will be stemmed to BASIC, a
product name, while the stemmed word for dies may con-
flict with the product DI As a result, we have to identify
potential conflicts and circumvent the problem by manually
undoing the stemmed words or adding new rules to the text
conversion step. The filtered words are combined with the
list of keywords found during the term separation step to
form the set of features representing the free-text field. The
last step of the free-text preprocessing stage involves the
construction of a feature vector for every case description
extracted by the data extraction module. For each term T}
of the description D;, we calculate its weight w;; according
to the metric

N
wij = tfijlog i

where NN is the total number of case records, term frequency
tfi; is the number of occurrences of T; in D;, and document
frequency df; is the number of case descriptions that con-
tain T;. Terms T} of sufficiently high weight are retained as
keywords for description D;. This is a widely used measure
in information retrieval [14, 13].
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Figure 1: System Overview

From the terms selected in the preprocessing step, we de-
rive the free-text feature space we need to classify the case
records. Using each word T} as a feature would lead to
an unmanageable number of dimensions. Instead, we em-
pirically reduce the dimensionality of the feature space by
grouping together related terms. This strategy works be-
cause there are strong correlations between the original term
features. By exploiting this redundancy, the dimension of
the feature space can be reduced to mere hundreds. We
used two different techniques for dimension reduction: sin-
gular value decomposition (SVD) [6] of the original matrix
of feature vectors and term clustering using a hypergraph
partitioning software, called hMETIS [8, 7]. SVD is a well-
known method for dimensionality reduction because it is
capable of extracting most of the salient features of the text
documents and removing the noise present in the data. Clus-
tering using hMETIS partitioning technique has been shown
to produce higher quality clusters compared to traditional
hierarchical agglomerative clustering techniques and Auto-
class [3, 9]. In [3, 9, 5], hypergraphs were constructed using
frequent itemsets generated by the Apriori algorithm [2, 1].
Each vertex would represent a term while each hyperedge
would correspond to a frequent itemset. However, it is not
clear what is the best way to assign an appropriate weight to
the hyperedge. For instance, [3, 9] have suggested using the

average confidence of association rules generated from the
frequent itemset while [5] proposed using an interest factor.
In contrast, our approach was slightly easier. From the orig-
inal matrix of free-text features, we computed the similarity
between each pair of words using an L» distance measure !.
We sparsified the matrix by choosing the k-largest values
for each row and setting the rest of the column entries to
zero. We then assigned each non-zero entry in the sparsi-
fied matrix as the weight for the corresponding edge in our
graph. Finally, we use hMETIS to partition the graph into
highly-connected clusters of words.

Both SVD and graph partitioning techniques proved to be
effective. The results of the dimension reduction phase (the
hmetis-discovered or SVD-derived clusters) are themselves
interesting, since they characterize the cases in a novel man-
ner. For example, cluster 57 (Table 1) contains terms such
as badpvfl, latch, partfail, softfail, switchover, swap, unet;
these terms point to a special control network product family
that features automatic switching to redundant units when
a failure has been detected.

!This approach was suggested in [14]. Other similarity mea-
sures such as cosine measure can also be adopted.
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Figure 2: Preprocessing of free-text field

2.3 Pattern Discovery

As mentioned earlier, one of the main goals of our text min-
ing system is to build a classification model using histor-
ical case records. The classifier supplies information that
can be used to improve future customer support or existing
products. Our text mining system uses the free-form text
description and/or the fixed-format header information to
predict whether a new case record would be resolved rapidly
(within one hour) or would take a longer time. These two
classes of cases are labeled LESS and MORE, respectively.

We have experimented with two inductive learning methods
for building our classifier :

e Decision trees.

e Naive Bayesian.

We construct decision trees with the C4.5 algorithm [11].
The algorithm begins by considering the entire feature space
as having the same class label. It then recursively partitions
this space in a greedy manner to minimize impurity due to
mixed class labels within a particular region in the feature
space. C4.5 uses the information gain ratio as the criteria for

splitting. The output of this algorithm is a decision tree in
which each intermediate node denotes the attribute chosen
to partition the feature space, and each leaf node is one of
the possible class labels.

We used RoC? as our naive-Bayes classifier for this project [12].
Unlike decision tree induction algorithms, a naive Bayes
classifier constructs a classification model by estimating the
conditional probability of each class label given a new in-
stance of the feature vector. The basic assumption in a
naive Bayes classifier is that the classes are mutually exclu-
sive and exhaustive, while the features are independent of
each other. RoC handles only discrete variables; continuous
variables are discretized. There are two ways to discretize
continuous variables. The range between the minimum and
maximum values can be partitioned into equally spaced in-
tervals, or into intervals having the same number of cases.

We chose C4.5 and naive Bayes as our classification algo-
rithms because they are commonly used in text categoriza-
tion and their results are easy to understand. Other clas-
sification schemes that can be potentially useful include k-
nearest neighbors, Support Vector Machines, etc. Compar-

*available at http://kmi.open.ac.uk/projects/bkd/



Table 1: Clusters obtained using hMETIS software.

[ Cluster ]| terms

57 mls, mms, mmph, softfail, interpret, remaind, io, uldm, statechg, accident,
ml, dn, mph, mml, ladder, mde, mpa, swap, right, flat, latch, badpvfl, iom,
partfail, unet, extender, inadvert, aliv, iolink, mmpa, offnet, rcn, pref,
siom, rack, circumst, switchover, full, consecut, hlai, odd, partner

80 overwrit, loopback, flip, lit, introduc, hub, Irc, rippl, cnet, dh, eos, gh, ii, ny, st, teak,
detector, recd, light, ckpt, valv, main, netway, cope, nic, diagnost, cmo, plcx, crm, femal,
translator, pcig, decoder, octal, upset, ktx, instrum, dih, sam

isons with these classification methods will be for future re-
search.

3. EXPERIMENTAL RESULTS

Our dataset contains 20,816 cases collected over a duration
of one year. About 75% of the cases (in this sample) were
resolved within one hour. We built the classification model
on a subset of the available data and evaluated the differ-
ent combinations of classifiers and dimension reduction tech-
niques.

The best combination was provided by the naive Bayesian
classifier with SVD (Table 2). We used SVD to decompose
the original matrix of features, X, into two matrices of sin-
gular vectors, U and V, and a diagonal matrix of singular
values, D :

X =UDV

By selecting k of the largest singular values in the diagonal
matrix (and setting the rest of the entries to zero), we can
obtain a new matrix X which best approximates X in a
least square sense. X is obtained by deleting the rows and
columns in U and V corresponding to small diagonal values
in D. In our experiments, we had used k = 100. Notice
that with fixed-format data, the classifier is biased towards
the LESS class labels. However, when free-form text is
incorporated, a less-biased model is obtained.

With C4.5 classifier, the best result is obtained using hMETIS
clustering. In this approach, each cluster becomes a new,
composite feature of the dimensionally-reduced feature space.
The C4.5 classifier with hMETIS consistently obtained a hit
rate near 53% with a false alarm rate less than 10% — imper-
fect but well above chance and the results produced by fixed-
format data. Figure 3 illustrates the hit rate (of MORE)
and false alarm (Type II error) for all the classification mod-
els built using C4.5 (with hMETIS clustering). These mod-
els were generated after performing a 10-fold cross-validation
on the dataset. Because this is an observational dataset, we
have no analytical means to assess the maximum attain-
able prediction accuracy. In short, our experimental results
revealed that there is some improvement in the predictive
accuracy of classification models when free-form text is in-
corporated.

Table 3 shows an example of a decision tree built with C4.5
using both header and cluster data. The learned cluster
features (100 of them) are all assigned arbitrary names, e.g.
f12, 92. The initial splits are frequently on the header fields
“call status” and “product” (the product family).

Cluster £80, highlighted in Table 3, is a good free-text indi-
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Figure 3: Hit rate versus false alarm rate for C4.5 clas-
sifer using mixed features (with hmetis clustering).

cator of longer (MORE) cases. Examination of 80 words
shows it has a large proportion of computer network terms,
such as “loopback”, “hub”, “nic”, and “gateway”. Clus-
ter 86, another trouble indicator, includes some interesting
terms: “overload”, “fear”, “sleep”, “attack”, “nervou”, “ex-
plicit”. A precise interpretation of these clusters is a job for
domain experts. Our results indicate how the initial assem-

bly can be significantly automated.

4. CONCLUSIONS

Our initial results show that incorporating free-text informa-
tion in service databases can potentially improve the classifi-
cation model. We are working with the service organization
to further develop these results. These results come in two
areas:

e the function that classifies the duration of a service
case based on information in the database record, and

¢ information about the structure of the domain that is
implicit in the clustering of terms.

Early conversations with our domain expert indicate that
this clustering provides useful information about classes of
service call. This information could be used either to im-



Table 2: Summary of classification results using various feature types and dimensional reduction strategies.

Classifier | dimension | Fixed | Free-form % Hit % Miss % Hit | % Miss
reduction | Format Text (MORE) | (MORE) | (LESS) | (LESS)
RoC - Yes No 39.4 60.6 96.0 4.0
SVD Yes Yes 79.3 20.7 62.5 37.5
C4.5 - Yes No 48.8 51.2 92.8 7.2
Clustering Yes Yes 52.4 47.6 91.7 8.3
SVD Yes Yes 43.2 56.8 94.0 5.1

prove handling of service calls, or to improve products (and
their documentation) to avoid the need for support.

This research could help service centers to identify case cat-
egories that are expensive to service. At the present time,
service centers cannot automatically analyze which types of
cases are consuming the most engineering resources. Case
categorization and cost summaries such as the ones we have
illustrated could enable the service center to locate its prob-
lem areas, and to quantify the resources expended in those
areas. This information can be used to solve the underlying
problems that are generating service requests: poor docu-
mentation on a particular product, faulty hardware design,
etc.

The methodology developed here could be applied to other
service centers. Some effort would be required to adapt to
a new domain (different database format, new acronyms),
but the methodology would remain unchanged.
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Table 3: Portion of automatically generated decision tree using mixed features.

Decision tree:
CallStatus in Busy_1X,Busy_2X,Busy_3X,Dispatch_-_Direct,Accepted: LESS (9.0)
CallStatus in Paged,AHE,No_Answer_2X,No_Answer_3X,VOX:
CallStatus in Paged,No_Answer_2X,No_Answer_3X,V0X: LESS (24.0/10.0)
CallStatus in Last_Time,EMAIL,Busy_1X,Busy_2X,Busy_3X,Wrong,

Message_1X,Message_2X,Message_3X,Redispatched,
No_Answer_1X,Contacted,Dispatch_-_Direct,Accepted,WEB,
N/A,FAX: MORE (0.0)

CallStatus in AHE:

Product in I0,LIU,P100,0HMUX : MORE (16.0/4.0)

Product = XMTR : MORE (5.0/2.0)

Product = IPC : MORE (3.0/1.0)

Product in CLM,LAN,HINTRF,SPICED,STI,ANLG,SOX,B0S,EPLGW,RECD,MIN,GWY,
AXV,XMP,IP,ALGOL,FCN,WMA,CB,MAX,MS-SCF,AFT,DPH,BC,R50MC,
BATCH, LANG, PUN, 1540, SI: MORE (106.0)

Product in EPCD,MDCM,DUC,UPGRADE,X9001: LESS (5.0)

Product in SM,A0S,_42_,_90_,E0S,FSC_SMM,MPCI,FATBUS,UNKNOWN, TTREND,
TOCTOOL , TSX_INFRASTRUCTURE,LOPS,SUW,IDS,_03_,APP,SAM,
LIPPKE,RED50S,HPOWR,TSX_APP_DIRECTOR,HCM,UC,SM-PICON,
DMCI,MAS,HVTS,CTL_BLDR,HOTTUNAII,ABE,DISK,SILCONIX,PCSI,
XPI_DOCUMENTATION,GRXPLOT,AWOL_RDI,BPC,NG,
DOCUMENTATION,MACRO,CNI,MISCELLANEOUS_PRODUC,HTD,NT,DMPC,
NETWORK ,DEBR,RHS ,USRCDR, I0OP_STREAMBUS ,HPK2,DR0SS , OPENDDA,
SCADA,DOCPTDX, OPUS,UTILIMOLD,PMC,TSX_WINDOWS_NT,LEXCON,
APPS,BRIC,ROC2K,TFIC,_31_,TSX_HARDWARE,_07_,MSH800,PCMM,
OPR,MAC,RULA,MULTI_SCHEMATIC,40XLAN,TSX_BLDR,UNIX,PCTCTL,
TIM,AWOL_SUPT_PRG,GRANT,AUX,PHLM_BUILDER,CRM,MOMSON,
25,BATCH40,XPBX,XP0OD,XRPCII,PARTS,49,XHS,DOSFILETRANS,
URLBOOK ,LINE_BUILDER,URTK,IO_MUX,PAE,PLANER,
KITS_&ENHANCEMENTS,ODBC,U2LAN,HER: MORE (0.0)

Product in LM,UPM,LLPIU,XXM,EC,LAN,UI,GAS,AWOL_MS,HARM,LEPIUS,
UON,PLCG,LAN5000,HM,PM, SANDSCAPE, AM,RCD,FSC,PATHWAY ,BSM,
0M&S_SUPT_PRGM,MFC , HPROCMOD,GCI :

f80 = 1: MORE (48.0)

£80 = 0:
£86 = 1: MORE (20.0)
£86 = 0:

1: MORE (15.0)
0:

| £99
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|

| | £99
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