Conditional Linear Planning

Robert P. Goldman and Mark S. Boddy
Honeywell Technology Center
{ goldman | boddy }@htc.honeywell.com
Honeywell Technology Center, MN65-2200
3660 Technology Drive
Minneapolis, MN 55418

Abstract

In this paper we present a sound and complete lin-
ear planning algorithm which accomodates conditional
actions: actions whose effects cannot be predicted
with certainty. Conditional linear planning is signif-
icantly simpler than conditional non-linear planning
in conception and implementation. Furthermore, the
efficiency tradeoffs which favor non-linear planning
do not necessarily carry over with the same force to
planning with conditional actions. We have applied
our conditional linear planner, PLINTH, to the prob-
lem of planning image processing actions for NASA’s
Earth Observing System. We discuss the extension of
PLINTH to probabilistic planning.

Introduction

Classical planning has been criticized for its reliance
on a complete model of actions (Brooks 1991). Con-
structing an elaborate plan to achieve some set of goals
makes little sense if the environment is sufficiently un-
predictable that the plan is likely to fail at an early
stage. There are several approaches to the problem of
generating plans for use in a changing and uncertain
world. These fall generally into three classes: making
plans more robust in the face of changes in the environ-
ment (Firby 1987), modifying plans as new informa-
tion becomes available (Krebsbach, Olawsky, & Gini
1992) and conditional planning (more precisely, plan-
ning with conditional actions): planning which takes
into account the uncertain outcomes of actions.

Conditional planning provides a limited relaxation
of the STRIPS assumption. In this model we do not
specify exactly what updates to the world model will
occur, given the preconditions of an action are satis-
fied (if they are not satisfied, the action sequence is not
valid). Instead, for each action we specify a set of pos-
sible outcomes, each of which is a world model update
(as for an unconditional STRIPS operator). Which of
these outcomes actually occurs, given the action takes
place, is beyond our control. Accordingly, we must
plan for all (or at least the most likely) contingencies.
We have explored the foundations of conditional ac-
tion planning in work reported elsewhere (Goldman &
Boddy 1994b).

We argue that conditional action planning is suitable
for domains in which there is limited uncertainty and
in which plans are constructed at a fairly high level of
granularity. Planning for organizations is such a do-
main. We are also experimenting with the planning
of image analysis operations for NASA (Boddy, Gold-
man, & White 1994). The latter application is akin to
Etzioni’s Softbot application (Etzioni & Segal 1992), a
domain in which conditional action planning is being
applied (Etzioni et al. 1992). Robot planning is prob-
ably mot such an application, unless it can be carried
out at a level of abstraction sufficiently high that much
of the uncertainty can be ignored.

Warren’s WARPLAN-C (Warren 1976) was the first
conditional planner. WARPLAN-C was a linear plan-
ner using STRIPS rules extended to express uncer-
tain outcomes, designed to support automatic pro-
gramming. The system was purely forward-planning.
Peot and Smith (1992) have developed a non-linear
planner for conditional planning. Given the current
prevalence and popularity of nonlinear planning, our
decision to construct a linear conditional planner may
require some explanation. In conventional, “classical”
planning applications, non-linear planning is usually
an improvement over linear planning because fewer
commitments yields a smaller search space, at a rel-
atively minimal added cost to explore each element
of that search space (Minton, Bresina, & Drummond
1991). However, it is not clear that this tradeoff oper-
ates in the same way for conditional planners. When
plans have multiple branches, the savings from consid-
ering fewer orderings is likely to be much less and may
not repay the cost in the added complexity of individ-
ual plan expansion actions. In particular, the domain
in which we have applied PLINTH is one in which sub-
goal interactions are minor, and thus in which a lin-
ear planner can be effectively employed. Conditional
linear planning is simpler in conception as well as in
implementation. In particular, our conditional linear
planner can be shown to be sound and complete; we do
not yet know of a sound and complete conditional non-
linear planner. Finally, the operation which is needed
to properly construct branching non-linear plans — re-



solving clobberers through conditioning apart — is a
very difficult operation to direct.

In this paper, we introduce PLINTH, a linear condi-
tional planner loosely based on McDermott’s regression
planner PEDESTAL (McDermott 1991). We show that
this planner is sound and complete with respect to its
action representation. This planner has been imple-
mented in Quintus Prolog, running on Sun SPARC-
stations. It has been tested on Peot and Smith’s “Ski
World” sample problem and on a simplified model of
the EOS (Earth Observing System) image processing
domain.

Action representation

We assume a variant of the STRIPS action notation
(with action schemas), expanded to include conditional
actions and propositions with a third truth value (un-
known). This representation is essentially that devel-
oped by Peot and Smith (1992), tidied up somewhat
by ourselves (Goldman & Boddy 1994b).

A domain is described by a set of atomic propo-
sitions. A particular state of this domain is de-
scribed by partitioning the atomic propositions into
three sets: propositions which hold, negated propo-
sitions and propositions which are unknown. Note
that this representation conflates the state of the world
and the planner’s knowledge of the state of the world.
When possible, this is a convenient way of simplifying
the planner’s reasoning. We discuss elsewhere condi-
tions under which this simplification is and is not pos-
sible (Goldman & Boddy 1994b).

A simple action in this framework is a partial func-
tion from world states to world states. This function
can be represented by three lists of propositions: those
made true by the action, those made false, and those
rendered unknown. The conditions under which an ac-
tion is applicable are represented by another triple of
proposition sets, the preconditions.

We enter operators into our planner as predicates
of three arguments: operator name, operator precon-
ditions and operator postconditions. The latter two
arguments are lists of literals, propositions, negated
propositions or unknown propositions (unk). As a
notational convenience, we record operator schemas
rather than operators.

A conditional action is one which has more than one
possible outcome. Which outcome occurs cannot be
predicted by the planner. This distinguishes condi-
tional actions from actions with context-dependent ef-
fects, like those in Pednault’s ADL (Pednault 1989).
We discuss the relationship between conditional ac-
tions and context-dependent actions in more depth
elsewhere (Goldman & Boddy 1994b).

Instead of having a single list of postconditions, a
conditional action will have a list of (joutcome-label,
postcondition list) pairs. A sample conditional opera-
tor is given as Figure 1.

This operator describes the application of a classifi-
cation algorithm (implemented on a MASPAR) to an
image. In order for this operator to be applicable, we
must have an image to be classified, that image must
be clean (noise has been removed), that image should
not already be classified and that image should not be
known to be unclassifiable by this algorithm. This last
precondition is necessary in order to keep the planner
from repeatedly applying the same operator in the fu-
tile hope that “this time it will work.” The need to
encode this kind of precondition is the reason why the
third truth value is necessary.

There are two possible outcomes of this operator. Ei-
ther the operator will work (outcome 1), Image will be
classified according to the given classification scheme,
or the operator will fail and the planner will come to
know that this algorithm is not a suitable method for
classifying the image (outcome 2).

Plan representation

Conditional operators complicate the representation of
plans. Unlike a conventional linear plan, a conditional
linear plan is in the form of a tree. The nodes of the the
plan tree are operator instances and edges are marked
with outcome labels.! Each conditional operator intro-
duces a branch into the tree. From an intuitive stand-
point, when the planner introduces a conditional oper-
ator, it will be introduced to achieve some effect, which
is achieved by some outcome of the operator. Since this
effect is not guaranteed to occur, the planner must “re-
pair” its plan by constructing a new plan to the goal
from each “unforeseen” outcome. A more detailed and
more formal treatment of the plan representation is
given elsewhere (Goldman & Boddy 1994b).

Figure 2 gives a conditional plan tree for a plan to
classify an input image according to the USGS II classi-
fication scheme and to determine a level of confidence
in this classification. A confidence level can be de-
termined by taking the results of a classification by a
trained classifier and comparing it with the results of a
kmeans classifier applied to the same image. The plan
in figure 2 contains branches twice, once for each of
the operators available to classify images according to
USGS II. This is a version of a plan generated by our
conditional linear planner for the EOS domain. The
has been substantially simplified to fit in this paper;
the actual generated plan has 16 nodes (counting three
goal nodes and a start node). Many of the additional
nodes correspond to operators to change the format of
various files in order to meet the preconditions of the
classification operators.

Planning algorithm
PLINTH’s conditional linear planning algorithm is non-
In the interests of mathematical tidiness, think of sim-

ple operators as degenerate conditional operators with only
a single outcome.



cond_operator (nn_maspar_classify(id:Image, class_scheme:SchemeId),

[file_type(Image, image),
clean(Image),

not classified(Image, Schemeld),

unk unclassifiable(Image, SchemeId, nnMASPAR)],

[1-[classified(Image,Schemeld),

not unclassifiable(Image, SchemeId, nnMASPAR)],
2-[unclassifiable(Image, SchemeId, nnMASPAR)]]).

Figure 1: A conditional operator for image processing.

Start

Apply K-means
classifier tT input file

Apply MASPAR classifier

Pp!
for USGS-II scheme to input file
— /N
Compare K-means and USGS-II

classifications to determine Apply Bayes Classifier
classification confidence level

1 (success) 2(fail)
Compare K-means and USGS-II

classifications to determine Plan fails
classification confidence level

GOAL-1 GOAL-2 GOAL-3

Figure 2: A conditional plan to classify an image ac-
cording to the USGS II classification scheme and de-
termine a level of confidence in the classification.

deterministic and regressive. Our development of the
algorithm was inspired by McDermott’s PEDESTAL and
our presentation of the algorithm owes much to McDer-
mott’s paper. The algorithm maintains three impor-
tant data structures: a partial plan, a set of protections
and a set of as-yet-unrealized goals. The planner oper-
ates by selecting an unrealized goal and nondetermin-
istically choosing an operator to resolve that goal while
respecting existing protections. New goals may be in-
troduced when steps are introduced, either to satisfy
preconditions or to plan for contingencies introduced
by conditional actions. Essentially this algorithm is
identical to that of a conventional linear planner. The
crucial difference is in the effect of adding a conditional
action to the plan.

The three significant data structures are the par-
tial plan tree, the protection set and the set of goals.
Partially instantiated plans are represented as trees.
Nodes in the tree are operator instances (steps). The
root of the tree is a distinguished start node and the
leaves of the tree are goal nodes. Each edge in the tree
is labeled with an outcome of the operator instance at
its tail.

Protections are triples, < E, P,C >. E and C are
steps of the plan and P is a literal. F is the establisher
and C is the consumer. P must hold from the end of
E to the beginning of C'. Goals are pairs: < P,C >. P

is a literal and C, the consumer, is a step of the plan.
In our description of the algorithm, we use the term
“Plan” to refer to a triple containing the plan tree, the
protection set and the goal set.

The initial state of the planner, when given
a conjunctive goal to achieve A;P; is as follows:

Plan Tree start — end
Protections 0
Goals {< Py,end >,< Pj,end >,...}

The planning algorithm is as follows:

plan(Goals, InitConds, Plan) :-
% construct the initial plan data structure
initial plan(Goals, InitConds, Planl),
do_plan(Planl, Plan).

Initially we construct a Plan data structure, Plani,
from the goals and the initial conditions. Recall that
this data structure contains plan tree, protections and
goal set. Then we plan until we reach a completed
plan, Plan.

In the planning process there are two cases. Either
there are no more goals, in which case we are done:

do_plan(Plan, Plan) :- plan goals(Plan, ().

or we (non-deterministically) choose one of the goals,
resolve it and continue.

do_plan(Plan, NewPlan) :-
% Planl is Plan with Goal removed...
pop-goal(Goal, Plan, Planl),
resolve goal(Goal, Planl, Plan2),
do_plan(Plan2, NewPlan).

There are three ways a goal literal can be resolved: it
may hold in the initial conditions, it may be established
by some step which already exists in the plan, or it may
be established by some new step:

% NewPlan is a partial plan derived from Plan, in

% which Goal has been achieved.

resolve goal(Goal, Plan, NewPlan) :-
use_ics(Goal, Plan, NewPlan).

resolve goal(Goal, Plan, NewPlan) :-
use_prev_step(Goal, Plan, NewPlan).

resolve goal(Goal, Plan, NewPlan) :-
new_step(Goal, Plan, NewPlan).

PLINTH may discharge a goal if that goal proposition
holds in the initial conditions (clauses 1 and 2 below).
In addition, there must be no step between the start
of the plan and the consumer of the goal which clob-
bers the goal proposition (3 and 4). Finally, in order



that the goal literal not be clobbered later, we add to
NewPlan a protection stretching from the start until
the goal literal is consumed (5).

use_ics(Goal, Plan, NewPlan) :-
1 goal prop(Goal,GoalP),
2 init_conds(GoalP),
8 goal_cons(Goal, GoalS),
4 no_violators(GoalP, start, GoalS, Plan),
5 add_protect(GoalP,start,GoalS, Plan, NewPlan).

Similarly, if there is some step in the plan that al-
ready achieves the goal (which is not clobbered by some
intervening step), then the goal may be discharged.
Again, PLINTH must add a protection which streches
from the establishing step to the consumer.

use_prev_step(Goal, Plan, NewPlan) :-
% Cons = Consumer; Est = Establisher
goal_step(Goal, Cons),
goal_prop(Goal, Prop),
previous_achiever(Prop, Cons, Est, Plan),
add protect(Prop, Est, Cons, Plan, NewPlan).

Finally, PLINTH may discharge a goal through the
addition of a new step which achieves that goal. The
addition of a new step involves two further choices: of
a position in which to insert that step (1) and of an
operator, which achieves the goal, an instance of which
is to be inserted (2). The step to be added must honor
the existing protections (3). Finally, we must add to
the Plan data structure a protection of the goal literal
(4) and add as goals the preconditions of the newly-
added operator (5).

new_step(Goal, Plan, NewPlan) :-
goal prop(Goal, GoalP),
goal_step(Goal, Consumer),
1 insert_point(Consumer, GoalP, Point, Plan),
2 op-achieves(GoalP, Op),
8 protectionshonored(Op, Point, Plan),
add_act(Op, Point, Plan, Planl, Step),
4 add_protect(GoalP, Step, Consumer, Planil, Plan2),
5 add_preconds(Step, Plan2, NewPlan).

Thus far, our description is simply that of a linear
planner without any conditional actions. The essential
difference arises when adding to the plan a conditional
action. When adding a conditional action, A, there
will be some outcome, O, such that A — O will es-
tablish the goal literal (otherwise A would not have
been chosen for insertion). This outcome will estab-
lish what one can think of as the “main line” of the
plan. However, there will also be some set of alterna-
tive outcomes, {O;}. In order to derive a plan which is
guaranteed to achieve the goal, one must find a set of
actions which can be added to the plan such that the
goals are achieved after A—Q;. for all i. The following
predicate will be invoked (by add_act) when adding a
conditional action:
add_other_outcome(OutC, Op, Branch, P1, NewPl) :-

% Create a new goal step

new_goal (Branch, P1, P11, NewGoal),

% connect the Outcome with the new goal step
add_act1(0p-0OutC,NewGoal-Branch,P11,NewPl).

Note that actions to deal with alternative outcomes
may be added either before or after the relevant con-
ditional action. Loosely speaking, we can add to our

Start

1 (success) 2 (fail)
Start

stp2:
apply MASPAR
classifier

stpl:

compare k-means &

USGS classification
stpl:
compare k-means &
USGS classification

Goal 4

Goal | Goal ,
Goals:
{<classified(infile,usgs-ii),stp1>, {<class-confidence(infile,usgs-ii),Goal >, ,

<k-means(infile,classes(usgs-ii)), <k-means(infile,classes(usgs—ii)),
stp1>} stp1>}

(a) (b)

Figure 3: (a) In order to determine a USGS-II classifi-
cation and find a confidence measure, one compares
the results of classifying according to the USGS-II
scheme with k-means classifying with the same number
of classes. This snapshot of the planner’s state shows
what the plan looks like before adding the MASPAR
classification action. (b) The state of the planner after
adding the conditional action of applying the MAS-
PAR classifier.

Goals:

conditional plans either remedial actions or precaution-
ary actions. For example, if I make a plan to drive a
road which may be snowy, I can either bring chains
as a precaution or plan to return to my house and get
chains if I find the road to be snowy when I get to it.

We establish the requirement for these additional ac-
tions by adding a new subtree for every alternative
branch. This new subtree initially contains only the
conditional step and a new goal node. For each origi-
nal goal conjunct, we also add a new goal to the goal
set with the conjunct as literal and the new goal node
as consumer. Figure 3 revisits the example of figure 2
and shows what happens when the conditional action
of MASPAR classifying the image infile is added to
the plan.

Theorem 1 The PLINTH algorithm is sound.

Proof: The PLINTH algorithm generates plans
which satisfy all goals. Assume the contradiction:
there exists some plan, constructed according to the
PLINTH algorithm in which some goal is not satis-
fied. Either (a) the goal was introduced but never
discharged or (b) the goal was introduced and dis-
charged, but is clobbered. Case (a) does not occur
because the algorithm does not halt until all goals are
discharged. If case (b) occurs then there exists some
step C' which consumes some literal P which is estab-
lished by E. Intervening between E and C' is some
step S which clobbers P. Now, S must be introduced
either (bl) before the goal is discharged or (b2) after
the goal is discharged. (bl) cannot occur: if there ex-
isted a step S meeting the restrictions above, then the



goal would not be discharged by initial conditions be-
cause of the no_violators test (step 4 of user_ics),
would not be discharged by use_prev_step because
the previous_achiever predicate checks for interven-
ing clobberers and E would not be inserted before S by
new_step because the insert_point predicate will not
permit regressing F beyond a clobberer. (b2) cannot
occur because when the goal is discharged, a protec-
tion < E, P,C > will be added to the plan, preventing
S from being inserted between E and C. O

Theorem 2 The PLINTH algorithm generates all well-
formed plans.

Definition 1 (Well-formed plans) A plan is well-
formed if, for each step S in the plan, there exists some
other step S’ in the plan subtree rooted at S such that
S’ has a precondition literal P which is not clobbered
by any intervening step S and which is established by
S. Top-level goals are treated as “preconditions” of a
final step F' along each branch of the plan tree.

Proof: Since the algorithm performs nondetermin-
istic search (implemented as exhaustive depth-first
search with an increasing depth bound), the program
will eventually try all ways of satisfying any undis-
charged goal. Thus it suffices to show that for any
well-formed plan, there is some choice of goal order-
ings and goal resolution methods that will generate
that plan. For any plan P, the following choices will
do the job:

1. Order the steps of P, {p1,p2,...,pn} such that:

e For any conditional action A with outcomes
{01, 02, ...0}, all of the steps in the subtree of
P rooted at A — O; come before those in the sub-
tree of P rooted at A — Oj, for all ¢ < j, and A
is after the steps in the subtree rooted at A — O
and before the subtrees for all the other outcomes,
and

e along every branch of P, steps are ordered in
inverse chronological order, with the exception
noted for conditional actions.

2. For each step p; in sorted order:
If p; is not a conditional action:

(a) Choose one of the goals satisfied by p; in P, and
resolve it by adding p;. Such a goal will exist,
because 1) P is well-formed, and 2) we are adding
steps in strict inverse chronological order, so any
such goal must already be in the set of goals.

(b) Resolve all of the other goals satisfied by p; in
P, using p; as an establisher. There will be no
clobberers, since there are none in P.

If p; is a conditional action, the argument above will
apply to the effects of the outcome O; of p;, denoted
pi — Ox:

(a) Choose one of the goals satisfied by p; — O; in P,
and resolve it by adding p;. Such a goal will exist,
because 1) P is well-formed, and 2) the subtree

rooted at O; has already been added, so any such
goal must already be in the set of goals.

(b) Resolve all of the other goals satisfied by p; — O1
in P, using p; as an establisher. There will be no
clobberers, since there are none in P.

3. Finally, resolve the remaining goals against the other
outcomes of the conditional actions in P.

The steps in the other outcomes for each conditional
action will be added in turn—the goals for those out-
comes will have been added when the conditional ac-
tion was first added. O

Implementation

The algorithm described here has been implemented
in the program PLINTH.? PLINTH is written in Quin-
tus Prolog. Using a depth-first iterative deepening
search strategy in Prolog permitted us to directly im-
plement the algorithm and retain the properties of
soundness and completeness. In fact, the planner is
simple enough that the algorithm description above
is simply an annotated presentation of the code, with
two simplifications: code supporting depth-first search
and the handling of schema variables has been removed
from the discussion here. PLINTH is being applied
to planning image processing operations for NASA’s
Earth Observing System, in collaboration with Nick
Short, Jr. and Jacqueline LeMoigne-Stewart of NASA
Goddard.

The automatic generation of plans for image anal-
ysis is a challenging problem. Preliminary processing
(e.g., removal of sensor artifacts) and analysis (e.g.,
feature detection) involve a complex set of alternative
strategies, depending in some cases on the results of
previous processing. For example, detailed location of
roads and rivers is only worth doing if there is evidence
that those features are present in the image.

We have successfully applied PLINTH to the gener-
ation of conditional plans for image analysis in “EOS
world” (named by analogy to the “blocks world”), a
planning domain based on data analysis problems re-
lated to the Earth Observing System’s Data and Infor-
mation System (EOSDIS). This domain is a rich one
for planning research. Among the capabilities that will
be useful for effective automatic planning for satellite
data analysis are conditional actions and information
gathering, parallel actions, deadlines and resource lim-
itations, and a distributed environment very reminis-
cent of Etzioni’s SOFTBOT environment.

Conclusions and future work

In this paper, we describe the conditional linear plan-
ner PLINTH and its application to image analysis plan-
ning for earth science data. Our eventual goal is an
epsilon-safe version of PLINTH, in which probabilities

2PLINTH is not an acronym; it was suggested by analogy
with McDermott’s PEDESTAL.



attached to action outcomes are employed to focus
planning effort on those eventualities most likely to
occur, and to bound plan construction using a proba-
bility threshold.?. For domains in which many actions
are conditional, resulting in a large number of possible
courses of action, this kind of reasoning will be abso-
lutely necessary. Constructing a complete conditional
plan would be infeasible, but epsilon-safe planning al-
lows us to put a principled limit on how much work
the planner does.

Our decision to implement a linear planner was both
heuristic (it was easier) and pragmatic (it was suffi-
cient). The resulting planner is simple (we present the
essential code in this paper), provably sound and com-
plete, and provides a simple platform for investigating
futher extensions. One potential pitfall to AI research
in the absence of a particular application—or without
at least without having some application(s) in mind—
is the temptation to add features that are not relevant
to solving some problem. A case in point was our ini-
tial assumption that an epsilon-safe planner would be
needed for image analysis. As it turns out, the po-
tential users of such a planner are not interested in
ranking outcomes by probability—they wanted all of
the interesting eventualities covered. The plans gener-
ated are small enough so that this was feasible, and so
the current version of PLINTH suffices.*

We are investigating various extensions to the plan-
ner described here. The combination of probabilities
and information gathering actions requires proper han-
dling of the distinction between what is true and what
the planner knows. Treating them as the same results
in a situation in which making an observation results
in the observed proposition having been known before
the observation was made (since it was clearly true be-
fore the observation was made). Sloppy handling of
the semantics of observation actions may result in a
planner that makes repeated observations in the hopes
of eventually getting the outcome it wants (as distinct
from the entirely reasonable case of repeated observa-
tions with a noisy sensor). Draper, et al. describe an
approach to integrating probablities and observation
actions in (Draper, Hanks, & Weld 1993). We present
another in (Goldman & Boddy 1994a).

Another direction we are exploring is the construc-
tion of more complicated probabilistic models, allowing
the encoding of dependencies among various observa-
tions (e.g., hearing a weather broadcast changes the
likelihood of a road’s being passable). It turns out that
simple dependencies of this form, at least, are easy to
represent: the probabilities for later actions can easily
be made dependent on earlier observation outcomes.
We have not addressed the issue of later observations

3An identical approach extending the probababilistic
planner BURIDAN is discussed in (Draper, Hanks, & Weld
1993)

4We are not quite so naive as to assume that this will
be true in all domains.

affecting the probability of some previous outcome by
providing information about what must have been true
at that time.

References

Boddy, M. S.; Goldman, R. P.; and White, J. 1994. Plan-
ning for image analysis. In Proceedings of the 1994 God-
dard AI Conference. to appear.

Brooks, R. 1991. Intelligence without representation. Ar-
tificial Intelligence 47:139-159.

Draper, D.; Hanks, S.; and Weld, D. 1993. Probabilis-
tic planning with information gathering and contingent
execution. Technical report, Dept. of Computer Science,
University of Washington.

Etzioni, O., and Segal, R. 1992. Softbots as testbeds for
machine learning. In Proceedings of the 1992 AAAI Spring
Symposium on knowledge assimilation.

Etzioni, O.; Hanks, S.; Weld, D. S.; Draper, D.; Lesh,
N.; and Williamson, M. 1992. An approach to planning
with incomplete information. In Nebel, B.; Rich, C.; and
Swartout, W., eds., Principles of Knowledge Representa-
tion and Reasoning:Proceedings of the Third International
Conference, 115-125. Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

Firby, R. J. 1987. An investigation in reactive planning
in complex domains. In Proceedings AAAI-87, 196-201.
AAAL

Goldman, R. P., and Boddy, M. S. 1994a. Epsilon-safe
planning. forthcoming.

Goldman, R. P.; and Boddy, M. S. 1994b. Representing
uncertainty in simple planners. In Doyle, J.; Sandewall,
E.; and Torasso, P., eds., Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Fourth In-
ternational Conference (KR94). San Mateo, CA: Morgan
Kaufmann Publishers, Inc. To appear.

Krebsbach, K.; Olawsky, D.; and Gini, M. 1992. An
empirical study of sensing and defaulting in planning. In
Hendler, J., ed., Artificial Intelligence Planning Systems:
Proceedings of the First International Conference, 136—
144. Los Altos, CA: Morgan Kaufmann Publishers, Inc.

McDermott, D. 1991. Regression planning. International
Journal of Intelligent Systems 6(4):357-416.

Minton, S.; Bresina, J. L.; and Drummond, M. 1991.
Commitment strategies in planning: A comparative anal-
ysis. In Proceedings of the 12th International Joint Con-
ference on Artificial Intelligence. Morgan Kaufmann Pub-
lishers, Inc.

Pednault, E. 1989. ApL: Exploring the middle ground
between STRIPS and the situation calculus. In First Inter-
national Conference on Principles of Knowledge Repre-
sentation and Reasoning. Morgan Kaufmann Publishers,
Inc.

Peot, M. A., and Smith, D. E. 1992. Conditional non-
linear planning. In Hendler, J., ed., Artificial Intelligence
Planning Systems: Proceedings of the First International
Conference, 189-197. Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

Warren, D. H. 1976. Generating conditional plans and

programs. In Proceedings of the AISB Summer Confer-
ence, 344-354.



