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Abstract
PDDL+ planning involves reasoning about mixed discrete-
continuous change over time. Nearly all PDDL+ planners
assume that continuous change is linear. We present a new
technique that accommodates nonlinear change by encod-
ing problems as nonlinear hybrid systems. Using this encod-
ing, we apply a Satisfiability Modulo Theories (SMT) solver
to find plans. We show that it is important to use a novel
planning-specific heuristic for variable selection for SMT
solving, which is inspired by recent advances in planning as
SAT. We show the promising performance of the resulting
solver on challenging nonlinear problems.

Introduction
Hybrid planning problems expressed in PDDL+ (Fox and
Long 2006) model mixed discrete and continuous change
over time. Prior work on PDDL+ plan synthesis assumes that
continuous change is linear (Coles et al. 2012; Bogomolov
et al. 2014; Coles and Coles 2014; Shin and Davis 2005). We
present a Satisfiability Modulo Theories (SMT) encoding of
PDDL+ planning that accommodates nonlinear continuous
change, and develop novel planning-specific heuristics that
build upon advances for SAT planning (Rintanen 2012).

We reduce PDDL+ planning to reachability problems
of hybrid systems (Henzinger 1996), which are encoded
and solved as first-order logic formulas over the real num-
bers (we call them LRF -formulas (Gao, Avigad, and Clarke
2012)). We use the framework of δ-complete decision pro-
cedures over the reals (Gao, Avigad, and Clarke 2012), and
apply the dReal SMT solver to decide δ-satisfiability or un-
satisfiability of the logic formulas. Showing δ-satisfiability
then involves finding bounds on ~x (the continuous state vari-
ables) such that the lower and upper bound on each literal
has width no more than δ. The dReal solver accomplishes
this by first using a DPLL-based SAT solver to find a set of
literals that satisfy each Boolean constraint. It then applies
an Interval Constraint Propagation (ICP) based branch and
prune solver to refine the intervals on each numeric variable
constrained by the literals. Because of the relaxation from
SMT to δ-SMT, we obtain a “tube” (Fox, Howey, and Long
2006) that may contain a feasible plan up to δ-bounded nu-
merical errors. Fortunately, δ controls the precision of these
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intervals and can be made very small. Furthermore, if dReal
identifies a problem as unsolvable, it is guaranteed to be cor-
rect.

SMT solvers have been developed for solving problems
in formal verification. Adapting them to planning problems
requires us to introduce new solving strategies for SMT
solvers. As a main contribution of this work, we describe
a novel variable and value selection strategy, which ex-
tends similar heuristics in SAT-based planning (Rintanen
2012). Our LRF encoding translates PDDL+ problems to
hybrid system problems, which are much more complicated
than traditional discrete planning, which only involves SAT-
solving. We need to solve SMT formulas that contain modes
(discrete states), flows (continuous change in each mode),
invariants (constraints in each mode), and guarded jumps be-
tween modes with discrete change. The heuristic, which is a
variation on the h1 heuristic (Haslum and Geffner 2000),
guides the SAT solver to construct feasible sequences of
modes and to remove unreachable modes from the LRF
encoding. Given a sequence of modes, the jumps between
modes correspond to PDDL+ happenings. We also present a
new heuristic for ICP that favors early start times for instan-
taneous actions.

Our approach addresses PDDL+ with instantaneous ac-
tions and processes. We accommodate durative actions by
first compiling them into instantaneous start and end ac-
tions that control a process describing continuous change.
We evaluate our solver on both linear and nonlinear varia-
tions of the generator and car problems from the literature
and a new domain that plans how to dribble a ball subject to
nonlinear drag and gravity. We show that dReal is capable of
finding non-trivial solutions and that our heuristic improves
its scalability.

In the following, we describe dReal, an SMT solver for
LRF . We present our encoding of PDDL+ planning as an
LRF hybrid system and illustrate the encoding with a sim-
plified version of the car domain. We then discuss our SAT
variable selection heuristic and ICP time branching heuris-
tic. We finish by empirically evaluating dReal and illustrate
its potential for adapting SAT based planning to handle non-
linear continuous change.



SMT Solving for LRF -Formulas
Our work formulates LRF encodings of hybrid systems to
express PDDL+ planning. We use the dReal solver to solve
(i.e., find satisfying solutions of) these encodings. As part of
this work, we extend the dReal solver to use heuristics that
incorporate domain-independent knowledge present in the
hybrid system specification. In the following, we provide an
overview of dReal and how it solves LRF problems.

LRF -Formulas LRF -formulas are first-order formulas over
real numbers, whose signature allows an arbitrary collection
F of Type 2 computable real functions (Gao, Avigad, and
Clarke 2012). The syntax is standard:

t := c | x | f(t(~x));
ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

A function is Type 2 computable if it can be algorithmically
evaluated up to an arbitrary numerical accuracy. All com-
mon continuous real functions are Type 2 computable.

dReal checks whether an LRF formula is δ-satisfiable
(a decidable problem) by combining a SAT solver (Eén
and Sörensson 2004) with an ICP solver (Granvilliers and
Benhamou 2006). dReal employs the DPLL(T) framework
(Bruttomesso et al. 2010) for SMT. It first solves the Boolean
constraints to find a satisfying set of literals of the form
(t(~x) ≥ 0) or ¬(t(~x) ≥ 0). This conjunctive set of liter-
als imposes a set of numeric constraints that are solved us-
ing ICP. If successful, dReal finishes, and otherwise, the ICP
solver returns a set of literals that explain inconsistency. The
inconsistent literals become a conflict clause that can be used
by the SAT solver. If the SAT solver cannot find a satisfying
set of literals, then it returns with an unsatisfiable result.

The ICP solver uses the branch and prune (Van Henten-
ryck, McAllester, and Kapur 1997) algorithm to refine a set
of intervals over the continuous variables (called a box).
Each branch splits the interval of a single continuous vari-
able, creating two boxes. Pruning operators propagate the
constraints to shrink the boxes. The primary pruning oper-
ator enforces hull consistency (Granvilliers and Benhamou
2006) of the box. The constraints that involve integrating an
ODE are propagated by performing interval-based integra-
tion with the CAPD library.1 ICP continues to branch and
prune boxes until it finds a box that is δ-satisfiable or estab-
lishes that no such box exists (i.e., the constraints are incon-
sistent). A box is δ-satisfiable when for any vector of values
~x represented by the box, each constraint f(~x) ≥ −δ (or
f(~x) > −δ) is satisfied.

Hybrid Planning
Following (Bogomolov et al. 2014), a PDDL+ planning
instance is a pair I = (Dom,Prob) where Dom =
(Fs,Rs,As,Es, Ps, arity) is a tuple comprising a finite
set of function symbols Fs, a finite set of relation sym-
bols Rs, a finite set of (durative) actions As, a finite set
of events Es, a finite set of processes Ps, and a function
arity mapping all symbols in Fs ∪ Rs to their respective
arities. The triple Prob = (Os, Init,G) comprises a set

1http://capd.ii.uj.edu.pl/

of domain objects Os, the initial state Init, and the goal
specification G. In the following, we restrict our focus to
instances that are event-free, and contain only instantaneous
(non-durative) actions. We also assume a grounded planning
instance that is grounded in the conventional manner.

States consist of both discrete variables (propositions p ∈
P ) and a vector of numeric variables ~x. Actions define a pre-
condition pre over both discrete and numeric variables and
effect eff that discretely changes both discrete and numeric
variables. Processes define a precondition pre which enables
the process when satisfied by the current state and an effect
eff that adjusts the rate of change of continuous variables.

Hybrid Automata
We encode hybrid automata reachability problems as a k-
step M -delay SMT instance defined with the first-order lan-
guage LRF over the reals, which allows the use of a wide
range of real functions including nonlinear ODEs.

LRF -Representations of Hybrid Automata A hybrid au-
tomaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(~x0, ~xt, t) : q ∈ Q}, {invq(~x) : q ∈ Q},
{jumpq→q′(~xt, ~x

′
0) : q, q

′ ∈ Q}, {initq(~x) : q ∈ Q}〉

where X ⊆ Rn for some n ∈ N, Q = {q1, ..., qm} is a
finite set of modes, and the other components are finite sets
of quantifier-free LRF -formulas.

Figure 1 lists the LRF encoding of a k-step M -delay
SMT instance for hybrid system H and reachability prop-
erty goalqG(~x

t
k). The first line includes the bounded (su-

perscripts) existential quantifiers over continuous variables
at the start (~xi) and end (~xti) of each mode as well as the
times of mode jumps ti (relative to the start of the source
mode). The second line states the initial value of each con-
tinuous variable, flows, and invariants in the initial mode.
The enforce literal is used to simplify encoding mode se-
quences. The third and fourth lines encode possible mode
transitions at each step i, as well as how the destination mode
behaves (i.e., its flows and invariants). We note that the set
of possible transitions hk(Q) will include all transitions at
each time by default. In the next section, we show how to
remove impossible transitions from this set as a by-product
of computing reachability heuristics. The final line encodes
the goal that must be met in step k.

Encoding Hybrid Planning as a Hybrid Automaton
The hybrid encoding of a PDDL+ planning task defines:

• X = Fs, where Fs is the set of ground functions.

• Q = 2P×ps∈PS preX(ps), where each mode corresponds
to a subset of propositions that are true and a subset of
the processes’ numeric preconditions that are satisfied. In
the following, we use modes q ∈ Q and the propositions
and numeric process conditions corresponding to q inter-
changibly.



∃X~x0∃X~xt0 · · · ∃X~xk∃X~xtk∃[0,M ]t0 · · · ∃[0,M ]tk.

initq0(~x0) ∧ flowq0(~x0, ~x
t
0, t0) ∧ enforce(q0, 0) ∧ ∀[0,t0]t∀X~x (flowq0(~x0, ~x, t)→ invq0(~x))∧

k−1∧
i=0

∨
(q,q′,i)∈hk(Q)

(
jumpq→q′(~x

t
i, ~xi+1) ∧ flowq′(~xi+1, ~x

t
i+1, ti+1) ∧ enforce(q, q′, i) ∧ enforce(q′, i+ 1)∧

∀[0,ti+1]t∀X~x (flowq′(~xi+1, ~x, t)→ invq′(~x)))
)

∧ goalqG(~x
t
k) ∧ enforce(qG, k).

Figure 1: SMT-encoding of k-step Reachability

• flow = {flowq(~x0, ~xt, t) : q ∈ Q} where flowq(~x0, ~xt, t)
defines:

∧
x∈X

xt = x0 +

t∫
0

∑
ps∈Ps(q,x)

effx
ps(s)ds


where Ps(q, x) is the set of processes effecting x that
have their propositional preconditions satisfied by q and
effx

ps is a process ps’s effect upon x.

• inv = {invq(~x) : q ∈ Q} where invq(~x) defines:∧
ps∈Ps(q)

∧
f(~x)∈preX(ps)

f(~x)

where Ps(q) is the set of all processes whose proposi-
tional preconditions are satisfied by q and preX(ps) is the
set of numeric preconditions f(~x) of ps.

• jump = {jumpq→q′(~xt, ~x
′
0)} where each jump corre-

sponds to an instantaneous action a ∈ As. If the dis-
crete preconditions of a are satisfied by q, and q′ =
q\eff−P (a) ∪ eff+

P (a) (using the respective negative and
positive effects), then the jump jumpa

q→q′(~xt, ~x
′
0) corre-

sponding to a defines:∧
f(~xt)∈preX(a)

f(~xt) ∧
∧

f(~xt,~x′
0)∈effX(a)

f(~xt, ~x
′
0) ∧ t ≥ ε

where preX(a) is a set of numeric preconditions and
effX(a) is a set of discrete numeric effects.

• init = initq0(~x) where q0 is the mode consistent with the
initial state propositions and initq0(~x) defines:∧

f(~x0)∈Initx

f(~x0)

where Initx is the set of initial function assignments.

We state the goal in LRF as goalqG(~x
t
k).

Example: Vehicle Planning Problem
A simplified version of the PDDL+ vehicle problem (Fox
and Long 2006) includes the following actions and pro-
cesses:

(:action start
:precondition ()
:effect (run))

(:action accel
:precondition (run)
:effect (increase a 1))

(:process moving
:precondition (run)
:effect (increase v (* #t a)))

(:process drag
:precondition (and (run) (> v 0))
:effect (decrease v (* #t (* 0.1 (ˆ v 2)))))

The initial state includes zero propositions indicating the vehicle is
not running and two continuous variables indicating its acceleration
and velocity:
(= a 0) (= v 0)

The goal is to increase the velocity by no less than 0.01 units:
(>= v 0.01)

TheLRF encoding of the hybrid system corresponding to this prob-
lem defines:
• X = {v, a}, variables for velocity and acceleration.
• Q = {{}, {run}, {v > 0}, {run, v > 0}}, for states where

run is false or true and the velocity is or is not greater than zero.
• flow{}(~x0, ~xt, t) is (at = a0)∧ (vt = v0) flow{run}(~x0, ~xt, t)

is (at = a0) ∧ (vt = v0 +
t∫
0

(a(s))ds) flow{v>0}(~x0, ~xt, t) is

(at = a0) ∧ (vt = v0 +

t∫
0

−0.1v(s)2ds)

flow{run,v>0}(~x0, ~xt, t) is

(at = a0) ∧ (vt = v0 +

t∫
0

a(s)− 0.1v(s)2ds)

.
• inv{v>0} and inv{run,v>0} is v > 0.

• jumpstart{}→{run}(~xt, ~x
′
0) is

(a′0 = at ∧ v′0 = vt ∧ t ≥ ε)
jumpaccel{run}→{run}(~xt, ~x

′
0) is

(a′0 = at + 1 ∧ v′0 = vt ∧ t ≥ ε)
jumpaccel{run}→{run,v>0}(~xt, ~x

′
0) is

(a′0 = at ∧ v′0 = vt ∧ t ≥ ε)



• init{}(~x0) is (a0 = 0) ∧ (v0 = 0)

• goal{run,v>0}(~xt) is (vk2 ≥ 0.01) ∧ enforce({run, v > 0}, 2)

Heuristics & Encoding Reduction
Modern DPLL-style SAT solvers commonly guide search by
branching upon variables appearing most frequently in recent con-
flict clauses (Moskewicz et al. 2001), such as by using the VSIDS
heuristic. Recent work in planning as SAT (Rintanen 2012) shows
that planning-specific heuristics improve considerably over prob-
lem agnostic variable selection heuristics. The intuition behind the
planning as SAT heuristic is to emulate plan space search that per-
forms means-ends reasoning to support each (sub)goal.

We adapt a similar form of means-ends reasoning to hybrid sys-
tems as SMT. We select a set of assignments to the enforce(q, q′, i)
and enforce(q, i) literals that encode a feasible k-step path through
the modes. By feasible, we mean that the path includes possible
jumps, while ignoring the guards and invariants. In selecting the
discrete path, the SAT solver can essentially remove all disjunc-
tion from the SMT encoding and assign the remaining literals with
unit propagation. Without this strategy, the SAT solver assigns the
enforce literals in an arbitrary order, only discovering conflicts (due
to infeasible discrete paths) after many decisions. While the VSIDS
heuristic might be able to learn an ordering of the enforce literals,
our approach extracts it from the problem definition and circum-
vents unnecessary search.
Mode Path Suggestions: Our approach is to maintain a queue Q
of enforce literal assignment suggestions. The SAT solver removes
assignments (if present) from the queue and adds them to the cur-
rent assignment. If the SAT solver backtracks, then we reconstruct
Q with a new set of assignments that are: 1) in agreement with the
current DPLL search assignmentD, and 2) represent an unexplored
discrete path.

We construct a depth first search stack of modes S =
[S0, . . . , Sk], where each Si is a list of possible modes at step i.
For each mode q in Si, 0 ≤ i < k there exists a jumpq→q′ ∈
jump where q′ is the head of Si+1 = [q′| ]. Given S, we de-
fine Q = Qk, . . .Q0. Qk includes enforce(q, k) for Sk = [q| ]
and ¬enforce(q′, k) for each q′ ∈ Q, q 6= q′. Similarly, Qi,
0 ≤ i < k, includes enforce(q, q′, i) for the Si = [q| ], such
that Si+1 = [q′| ], and ¬enforce(q′′, q′′′, k) for each q′′, q′′′ ∈
Q, q′′ 6= q, q′′′ 6= q′. Q0 is defined similar to Qi, 0 < i < k,
except that it also includes enforce(q, 0) and ¬enforce(q′′, 0) lit-
erals.

We maintain the search stack S by two algorithms backtrack
and extend. We initialize S with extend and then use
backtrack followed by extend to construct a new path that
is both in agreement with D and suggests an unexplored discrete
path.

We do not list the pseudocode for backtrack, for lack
of space and its relative simplicity. The backtrack algorithm
serves two purposes: to align the stack S with D and to back-
track from dead ends reached by the extend algorithm. Align-
ing S with D ensures that enforce(q, q′, i) ∈ D iff there exists an
Si = [q|Srest

i ] and Si+1 = [q′|Srest
i+1 ]. Backtracking from dead

ends involves i) popping each Si from stack S until the current Si

has more than one element, and ii) popping the first element of Si.
The extend algorithm (Algorithm 1) expands a current stack

S until it includes a mode for each step, or it exhausts all possible
mode sequences and fails (meaning the problem is unsatisfiable).
Lines 5-9 involve generating the children at step i. Lines 10-17
backtrack if there are no children and return Failure if there are no
backtrack points. Lines 18-22 add the children to the stack and sort
the children by their forward cost.

Algorithm 1: Extend a choice stack to a complete path.
1 extend(S, D, hk(Q))

input : A partial mode choice stack S = [Sj , . . . , Sk];
a set of literal assignments D; and a set of
allowed transitions hk(Q).

output: A complete mode choice stack S
2 for i from j − 1 to 0 do
3 Si ← [];
4 //Expand q′ at step i+ 1, generate children at step i;
5 for q ∈ Q do
6 if (q, q′, i) ∈ hk(Q), Si+1 = [q′| ], and

¬enforce(q, q′, i) 6∈ D then
7 Si ← [q|Si];
8 end
9 end

10 if |Si| = 0 then
11 //q′ is dead end;
12 S ← backtrack(S,D);
13 if |S| = 0 then
14 return Failure
15 else
16 i← |S| − 1
17 end
18 else
19 //prioritize by forward cost from initial state;
20 Si ←sortfc(Si);
21 S ← [Si|S];
22 end
23 end

Reachability Heuristic: The forward cost of a mode is the fewest
jumps required to reach it from the initial mode:

fc(q′) =


0 : initq′(

−→x )

min

(
min

jumpq→q′∈jump
fc(q) + 1,∞

)
: otherwise

We define the backward cost of a mode as the fewest jumps re-
quired for it to reach a goal mode:

bc(q) =


0 : goalq(

−→x )

min

(
min

jumpq→q′∈jump
bc(q′) + 1,∞

)
: otherwise

Using the forward and backward costs, we can prune the set of
allowed jumps and define:

hk(Q) ={(q, q′, i)|allowk(q, q
′, i), q, q′ ∈ Q}

where allowk(q, q
′, i) is defined as fc(q) ≤ i ∧ fc(q′) ≤ i+ 1 ∧

bc(q) ≤ k − i ∧ bc(q′) ≤ k − i+ 1.
Encoding Reduction: The forward and backward reachability
analyses help prune both the enforce literals suggested by the depth
first search and the clauses in Figure 1 (c.f., the disjunction over
hk(Q) in line 3). The heuristic prunes solely based upon the dis-
crete aspects of the hybrid system. It can be extended to consider
the continuous aspects as well, for example, by using the intervals
propagated by Metric-FF (Hoffmann 2003).
ICP Time Splitting Heuristic: In addition to the SAT heuris-
tic for selecting mode sequences, we also make use of a simple



ICP heuristic for planning. We observe that many actions (e.g.,
starting the car) can happen as quickly as possible, even though
delaying their execution is possible. We force ICP to split time
variables ti in a special manner, but rely upon dReal’s existing
ICP implementation to select variables to branch. The first time
that ICP selects a time variable ti with interval [lb(ti), ub(ti)],
we split its interval into the two subintervals [lb(ti), lb(ti) + ε]
and [lb(ti) + ε, ub(ti)]. In subsequent splits, we use the default
split [lb(ti), lb(ti) + (ub(ti)− lb(ti))/2] and [lb(ti) + (ub(ti)−
lb(ti))/2, ub(ti)] because the value for ti must be relatively greater
than ε otherwise.
Implementation: The mode path selection and time splitting
heuristics are implemented by extending existing mechanisms with
dReal. dReal is based upon the OpenSMT solver (Bruttomesso et
al. 2010), which provides a literal suggestion interface between
the SAT solver and each theory solver. In dReal, the theory solver
(i.e., ICP) implements the heuristic by reasoning about the hybrid
system specification and the current (partial) literal assignment. It
communicates these suggestions via the existing interface. The ICP
solver wraps the Realpaver (Granvilliers and Benhamou 2006) en-
gine by customizing its algorithms for variable and value selec-
tion. The time splitting heuristic is implemented as a custom value-
selection/branching heuristic that decides where to split an interval
and which side of the split to select first.

Empirical Evaluation
We first show experiments that evaluate dReal with and without
the heuristics described in the previous section and for various val-
ues of δ. We report results for the minimal step encoding required
to solve each instance. In all cases, dReal can detect unsatisfiabil-
ity of encodings using fewer than the minimal steps in negligible
time. We use the generator and car domains from the literature (Bo-
gomolov et al. 2014) and a new domain called Dribble. Next, we
compare dReal externally with existing PDDL+ planners on linear
problems (using results from (Bogomolov et al. 2014)). The ex-
isting planners include SpaceEx (Bogomolov et al. 2014), CoLin
(Coles et al. 2012), and UPMurphi (Della Penna et al. 2009). In all
experiments comparing with other planners, dReal uses all heuris-
tics and δ = 0.1. We will see that there is still much room for
dReal to improve on linear problems by incorporating techniques
from leading tools such as SpaceEx.
Domains: The car domain includes only instantenous actions and
processes, and is very similar to our running example. The differ-
ences are that it includes a decelerate (decel) action and distance
variable, it requires that velocity is zero and distance is thirty in the
goal, and it scales by imposing increasing limits on the magnitude
of the acceleration function. Additional acceleration or decelera-
tion increases the branching factor of the problem. The linear and
nonlinear versions of the domain differ in whether they include the
nonlinear drag process (as shown in our example).

The dribble domain involves three processes effecting a ball,
upward velocity (v) decreasing due to gravity (−g) and drag
(−0.1v2), and vertical position (x) increasing with velocity (v).
The available actions are dribble(f ) and oppose, which decrease
velocity by f ∈ {0, 1, 2, 4} or increase velocity by −0.9v. The
dribble action has the precondition that velocity is zero, and the
oppose action, that the ball position is zero. The initial state places
the ball at x = 1 with velocity v = 0 and the goal is to reach
1.5 ≤ x ≤ 3.0.

The generator domain is normally encoded with durative actions
for pouring fuel into the generator and running the generator. We
translated the problem to use two instantaneous actions and a pro-
cess for each durative action. Thus, as the number of tanks x in-
creases (in each instance) the number of steps required by dReal’s

encoding is 2(x+1) (the start and end for each tank pouring action
and the start and end for running the generator). We also created a
nonlinear version that models how fuel pours more quickly over
time. The pouring process defines the effects as

(increase fuel (* #t 2))

or

(increase ptime (* #t 1))
(increase fuel (* #t (* 0.001 (ˆ ptime 2))))

Internal Comparison: We evaluate how well dReal performs on
nonlinear versions of the domains as well as how it is sensitive to
the use of heuristics and the choice of δ.

δ SAT ICP 1 2 3
Heur. Heur.

1 • • 5.36/2/19 5.36/2/19 5.36/3/19
0.1 • • 16.62/2/58 16.64/2/58 16.25/3/58
0.01 • • 15.20/2/66 15.17/2/66 14.81/3/66
1 • 9.19/746/20 447.57/6727/96 27.59/3697/18
0.1 • 17.66/746/59 384.82/6980/254 35.65/3697/57
0.01 • 19.16/746/67 378.19/6980/230 37.17/3697/65
1 • 34.83/2/181 34.54/2/181 34.67/3/181
0.1 • - - -
0.01 • - - -
1 40.45/746/182 453.62/6727/102 58.30/3697/180
0.1 - - -
0.01 - - -

Table 1: dReal Runtime (s)/SAT Nodes/ICP Nodes results
on nonlinear car. “-” indicates a timeout.

SAT 2 4 6 8 10
Heur.
• 192.52 33.50 65.16 122.91 224.61

595.59 57.24 79.16 - -

Table 2: dReal Runtime (s) results for Dribble with increas-
ing plan lengths k ∈ {2, 4, 6, 8, 10} with and without the
SAT mode sequence heuristic. “-” indicates a timeout.

Dom 1 2 3 4 5 6 7 8
Car 16.62 16.64 16.25 16.77 16.56 16.79 17.44 16.6
Gen 12.80 71.63 1696.84 - - - - -

Table 3: Runtime results (s) on nonlinear generator and car.
“-” indicates a timeout.

First, Table 1 lists the runtime, number of SAT decisions (nodes)
and number of ICP decisions (nodes) for the nonlinear car domain
instances one through three. The table lists results for values of δ ∈
{1, 0.1, 0.01} and whether dReal uses the SAT variable selection
heuristic and the ICP time branching heuristic.

The trends shown in Table 1 are that: i) decreasing δ will always
increase the number of ICP nodes and sometimes the SAT nodes,
ii) the ICP heuristic has a substantial impact upon the number of
ICP nodes, and iii) the SAT heuristic impacts the number of SAT
nodes, and holds the number of SAT nodes roughly constant as
the instances scale. Improving ICP through better variable selec-
tion and constraint propagation will have the most impact on these
instances because the SAT heuristic already reduces the number of



SAT nodes to a minimum. This observation applies to the other do-
mains as well. dReal is able to find a feasible sequence of mode
transitions quickly, but struggles to show δ-satisfiability when it
must tighten the boxes around variables encoding several steps.

Table 2 lists the results for the Dribble domain with and without
the SAT mode sequence heuristic. The ICP time splitting heuris-
tic did not change performance in this domain and is omitted from
the table. The results illustrate that the SAT heuristic can help re-
duce total time by considering fewer plans and that the ICP search
is effective at verifying a plan satisfies the nonlinear continuous
constraints. We note that the instance with k = 2 is particularly
challenging for ICP because the vertical position is almost exactly
1.5 at the end of the plan and ICP automatically selects a very fine
step size for its interval-based integration.

To evaluate scalability, we show in Table 3 the running time on
the car and generator domains, using both heuristics and δ = 0.1.
(The results for dribble with the same steps have been included in
Table 2.) The instances scale by adding the indicated number of ac-
celeration and deceleration steps in car, or by adding the indicated
number of tanks to refill the generator. Dribble scales by increasing
the number of possible plan steps.
External Comparisons: Table 4 compares dReal with the other
planners on linear instances of the generator and car domains. As
above, each instance scales the respective number of tanks to fill
the generator (where each tank is required) and levels of accelera-
tion/deceleration. We see that dReal is competitive on the car do-
main, but scales relatively poorly on the generator domain. Upon
closer inspection, the reason that dReal scales poorly is that it
spends considerable time in its ICP branch and prune search after
finding a feasible mode path. We note that during constraint prop-
agation, dReal does not use pruning operators that are optimized
for linear functions. Recognizing and exploiting linearity could im-
prove performance considerably. dReal scales well in the car do-
main because its heuristic uses reachability information to prune
unreachable modes. As we show in Table 5, dReal’s performance
without the heuristic is much worse.

Dom Planner 1 2 3 4 5 6 7 8
Gen dReal 3.07 15.6 134.71 1699.87 - - - -
Gen SpaceEx 0.01 0.03 0.07 0.1 0.19 0.28 0.45 0.65
Gen CoLin 0.01 0.09 0.2 2.52 32.62 600.58 - -
Gen UPMur 0.2 18.2 402.34 - - - - -
Car dReal 1.07 1.17 1.16 1.22 1.23 1.29 1.26 1.21
Car SpaceEx 0.01 0.01 0.01 0.03 0.04 0.05 0.06 0.07
Car CoLin x x x x x x x x
Car UPMur 28.44 386.5 - - - - - -

Table 4: Runtime results (s) on linear generator and car. “-”
indicates a timeout.

Discussion: dReal and SpaceEx find plan tubes, whereas, CoLin
and UPMurphi find one or more concrete plans. By concrete, we
mean that each action executes at a single, fixed time point. In
some restricted cases, dReal and SpaceEx can find concrete plans.
In general, constructing a concrete plan from a plan tube is unde-
cidable (Gao, Avigad, and Clarke 2012). One remedy is to make
dReal more precise than the plan validator (e.g., VAL (Fox and
Long 2003)) by setting δ smaller than the ε tolerance used by the
validator and then selecting an arbitrary concrete plan consistent
with the tube. The best we can hope to attain is a precision greater
than the plan executor/validator. In contrast with dReal, SpaceEx
is unable to make similar guarantees about its plan tubes because
it does not prune the tubes, rather it maximizes its representation
of reachable states to improve state subsumption checks prior to

δ SAT ICP 1 2 3
Heur. Heur.

1 • • 0.45/2/6 0.48/2/6 0.55/3/6
0.1 • • 0.55/2/8 0.54/2/8 0.60/3/8
0.01 • • 0.66/2/10 0.66/2/10 0.73/3/10
1 • 6.82/1302/6 10.83/2286/9 20.71/4196/8
0.1 • 6.76/1302/8 11.81/2286/6 21.12/4196/10
0.01 • 6.96/1302/10 10.93/2286/11 20.96/4196/12
1 • 0.88/2/15 0.91/2/15 1.05/3/15
0.1 • 1.77/2/29 2.07/2/29 2.03/3/29
0.01 • 2.22/2/36 2.77/3/36 2.42/3/36
1 8.78/1302/15 15.40/2286/18 28.15/4196/17
0.1 9.04/1302/29 14.04/2286/27 26.26/4196/31
0.01 10.61/1302/36 16.37/2286/39 25.86/4196/38

Table 5: dReal Runtime (s)/SAT Nodes/ICP Nodes results
on linear car.

plan extraction. Nevertheless, both SpaceEx and dReal might iden-
tify plan tubes that do not in fact contain a concrete plan; however,
both can reliably prove plan non-existence.

Related Work
While PDDL+ has been an accepted language for planning with
continuous change for nearly a decade, very few planners have
been able to handle its expressivity. Planners either assume that
all continuous change is linear (Shin and Davis 2005; Coles and
Coles 2014; Bogomolov et al. 2014; Coles et al. 2012) or handle
nonlinear change by discretization (Della Penna et al. 2009).

LP-SAT (Shin and Davis 2005) is very similar in spirit to our
work because it uses a SAT solver to solve Boolean constraints and
an LP solver to solve continuous (linear) constraints. The nature of
the encodings is somewhat different in that our encoding makes use
of the hybrid system semantics of PDDL+ in a very direct fashion.
LP-SAT more closely resembles classical planning as SAT encod-
ings. Unlike our work, LP-SAT does not incorporate heuristics that
are aware the encoding represents a planning problem.

Bogomolov et al. (2014) and Della Penna et al. (2009), like our
work, makes use of the planning as model checking paradigm. Un-
like our work, Bogomolov et al. encode a network of linear hybrid
automata and handle durative actions and events. Bogomolov et al.
use the SpaceEx model checker (Frehse et al. 2011), which per-
forms a symbolic search over the hybrid automata.

Coles and Coles (2014) and Coles et al. (2012) approach
PDDL+ from the perspective of heuristic state space search. Coles
and Coles exploit piecewise linear representations of continuous
change to derive powerful pruning conditions for forward heuristic
search.

Conclusion
We present a new approach to PDDL+ planning that compiles prob-
lems into the LRF language. The encoding can be checked for sat-
isfiability by a state of the art SMT solver that supports nonlinear
continuous change, which is a first for PDDL+ planning. Due to
the nature of the problem, the solver finds plan tubes by solving
a δ relaxation of the problem. We have shown that δ is a useful
parameter that trades SMT solver effort for solution accuracy.

In addition to showing how to encode PDDL+ planning as a
hybrid system in LRF , we have presented reachability heuristics
that help prune the SMT encoding. These heuristics also inform
an SMT variable selection heuristic procedure in the dReal solver.
The procedure helps dReal overcome one its main inefficiencies
of constructing infeasible sequences of modes unnecessarily. The



resulting scale up in performance helps dReal solve challenging
PDDL+ benchmarks, putting it on par with the state of the art.
Acknowledgements: This work was supported under ONR Con-
tract XXXX.
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